Schlagwort-Archive: Arktis

Scientific method and so-called skeptics

This is an addendum to the answer I have tried to give to Scott Adams‘ (the creator of Dilbert)
question on why science can’t seem to persuade climate skeptics. The basic answer is: Because they don’t want to be convinced. Maybe I should leave it at that, but I feel that maybe some people could indeed benefit by discussing the finer points of the methods of science Adams is targeting with his post. So this is for those specialists (this post not being announced anywhere but at the end of the main answer I have given).

Dear Scott Adams, I’ll dip into some of your points 1 through 14 here. I’ll go at my own pace, I am not necessarily going to jump the hoops you hold up. If you want to skip ahead: I will be dealing with

For starters this business about supplying a number, a percentage of how much of global warming was man-made. The IPCC said in 2013: “It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century.“ The UN-body elsewhere defines “extremely likely” as 95 to 100 percent probability. But it doesn’t give a number for “dominant”.

Let’s figure this out. Since the only other category except human influence would be non-human or natural influence we have a two-way-split. I think it would be safe then to assume that dominant means decidedly more than 50 percent. And if you look at this figure from that same IPCC report, you would think it is closer to 100 percent, wouldn’t you? Without human influence there would be little to no warming, that’s those blue bands. Add human and natural together and you get the pinkish bands around the actual observations. It’s clearer in larger regions with more data: temperatures in North America, Europe, Asia, Australia show no overlap of the colored bands anymore. And it’s most clear in global averages. And there are literally 1000s of sources in the IPCC report.

Source: IPCC, AR5, WG1, Figure SPM.6 

Maybe well over 50 to 100 percent human influence is still too vague for you. Sorry, things are not as simple as we all would like them to be. Anyways: Any single number would most certainly be evidently wrong in the precision it radiates. And attack would be sure to follow. Another of the mock debates surrounding this issue.

Next: Why do you fight being told the rate of warming was a tell-tale sign of what is happening? Rates are often as important or even more so than absolute numbers in every day life, too. Consider the task of sending a message from New York to San Francisco: The distance has stayed the same since both cities are on the map. First you could send it via stage coach, then by train, plane, now e-mail. The amount of time went from weeks to seconds and that means the speed of transmission, the rate of transport went up by orders of magnitude. Not such a difficult concept, is it? And that doesn’t mean heat and cold records aren’t relevant information, too. In fact they are, and there are way more new heat records than new cold records. By 4:1, here is a source for the US.The point is, if there was no change, then there would randomly be new cold and heat records in about the same proportion.

Arctic vs Antarctic: The ice goes away in the north and grows in the south, you say, and accuse scientist of ignoring that. Well, they aren’t, there is lots of research trying to figure out what is happening in both areas. If you think scientist are hiding that ice is growing down south then maybe you are listening to somebody who wants you to think they are hiding it. You can, for instance, look here if you interested in sea ice. For land ice, this might be a good starting point – the question, it says, in under debate.
There are several big differences between the regions that make the simple comparison you demand difficult, to put it mildly. Antarctica is a continent surrounded by ocean and fierce circumpolar currents that basically give it its own independent weather. The Arctic is an ocean surrounded by continents and tightly coupled to what happens with storms, temperatures and precipitation in many countries around it including yours and mine. The northern polar region belongs to a hemisphere that contains two thirds of earth’s land mass – including the major industrial nations with their emission histories. The southern has one third of the land including Antarctica and is otherwise 81 percent water. Why would you expect the two regions to be mirror images? It’s also not as if they were shifting ice masses between them making the changes a zero-sum-game. It is a little like adding the scores of the Chicago Bears, Cubs, Bulls, Black Hawks and Red Stars and comparing them to a sum of clubs from Los Angeles to see which is the better sports town.

And just to finish up with details, your point number 11.

  • Why aren’t insurance companies paying attention to sea level rise? They are. The US flood insurance program is recognized to be in dire need of reform because of rising seas (here, here and here, the last being a report by the National Academy of Sciences). And internationally take the example of Munich Re. It says in its annual report (page 74) that “Climate change represents one of the greatest long-term risks of change for the insurance industry”. It quotes the cost of adapting to sea level rise as 1 trillion dollars for the US alone. And university analysts have given it thumbs up on its response.
  • Why do your beaches look the same? Well, Wikipedia has you living in California, the Eastern Bay area to be exact, and I assume you might be going to Santa Cruz or thereabouts. So let’s look at a map. Here is Santa Cruz with the inundation 2010, 2060 and 2100 (Source). The water has been progressing slowly (and presumably local authorities have taken care of their beaches) but changes will accelerate.
                              Source: Monterey Bay Sea Level Assessment by Noaa

    The numbers in one projection are: seven inches rise last century, six more until 2030, another six until 2050, and two more feet on top by 2100. So you are in the middle of the two-inches-per-decade phase between 2000 und 2030. That’s not easy to notice by naked eye especially when there is maintenance going on. The water will rise, your state authorities say.
  • Why are half the top hits in web searches debunking the rise? Are you honestly asking that? It’s not about the quantity of hits but about the quality of sources. Bloggers have made it their business to attack the science and since they get shared and linked across a parallel universe the Google algorithms think the sites are trustworthy. They get ranked high like science sources who often don’t spend as much time on search engine optimization. For fun try “aliens landing earth” or “Barack Obama muslim” to see the quota of reliable information.

Now for the grand finale, your major and indeed first point: models. Maybe you have been impatiently skipping down here (or maybe you have tuned out) because the IPCC-graph I showed earlier depends on models. How else would you be able to artificially switch off human contributions? That’s nothing we can do in real life.

But why do we need models, in plural, at all? Well, that’s a tenet of science. You make multiple measurements because each one could be flawed, and then you look at what the tendency, the average, the median is, or whatever statistical analysis of them tells you. It’s easy to make fun of that, I know. In everyday life one measurement usually suffices. Has your kid gained another inch, have you lost weight, are the panels of your strip all the right size, is there enough flour in the cookie dough, how many people are at the party, is there enough pressure in your tires, how many e-mails do you get in a single day? Nobody does multiple measurements and statistical analysis for those. Well, for the e-mails you might to eliminate the effect that there could be systematically higher numbers on single days, maybe Mondays and Fridays – just guessing.

In science the questions are usually a whole lot harder, so this multiple measurement habit has proved to be a good idea. As has trusting science as a whole for society, by the way. A consequence of doing this, if you do it right, is that you get two numbers. The result you are looking for and a measure of confidence that that is a figure you can depend on. Scientists being a little nerdy often call the confidence measure “uncertainty”. And that is what it is, too. It is a measure of how uncertain we need to be – or certain we can be. In everyday language that word “uncertainty” comes across badly, just like scientists don’t know their stuff. In fact it is not a weakness but a strength of the scientific method. It has established ways of quality control that are certainly lacking from many other parts of communication – like getting directions in a strange town, remembering the weather two years ago, indicating the size of fish you caught.

When there are no measurement values to be had, because you are talking about a future that hasn’t arrived yet, you need to construct models. They simplify reality in a way that makes it computable, usually leaving out big chunks of the complicated stuff. As the saying goes, they are all wrong, but some are useful. For them also it is a good idea to have several, ideally constructed from scratch in independent, competitive research groups. If they point in different directions, all but one must be getting it wrong. If, however, they point in the same direction that can boost confidence they are getting something right.

Of course they could in principle still all be wrong. Then they all would make the same mistakes and that points to the underlying science being wrong. It’s equations about how pressure and humidity and wind and rain work together and how CO2 and other greenhouse gases influence the radiation that enters and leaves the atmosphere. Complicated stuff but pretty well tested, so the criticism against models is usually not leveled there.

This graph comes from the IPCC. It shows there’s some work to be done but not total chaos. It is a comparison of a whole lot of climate models hindcasting global temperatures over roughly 150 years and through several large volcano eruptions. Black and bold are the observations, red and bold is the average of the models, the thin lines are individual ones, the yellowish shading marks the reference period against which all temperature differences are measured.
Source: AR5, WG1, Figure 9.8, 2013

To prove that the equations and the mechanisms in the models are working together well researchers do this thing called hindcasting that irritates you so. The models start their work at some point in the distant past, fed with the initial conditions from that point in time and then run unguided through the years up to the present. The results can be compared to what actually happened and give the model makers a measurement of how good they are doing. Only if they pass that test can anyone place any confidence in them getting the future right.

„It tells you nothing of their ability to predict the future“, you say. I wonder why you would think you are in the position to judge that. Yes, hindcasting indeed tells us something about the ability to project the future, because the models prove they get the underlying science right. They calculated a future from 1850 onwards based on first principles. It’s just that for us, that future is the past.

I think it is seriously wrong to equate climate models to the financial market. You are missing something rather important. In climate science people actually know what is happening and what causes what. Obviously the minute details of dealings at the Stock Exchange are NOT known even remotely as well. If you insist on that kind of simile: The only thing that would be comparable is if you have a set of publicly available rules and based on that not one financial genius but a whole bunch of them put their predictions of the future into sealed envelopes guarded by a trusted institution only to be opened when the end year envisioned has arrived and all the data are in. And you would only count it as a success if everyone of those guys got it reasonably right.

Anyways, hindcasting of course is not the primary product of the models. It is a necessary quality check, nothing more, nothing less, and should no more be advertised than race track results for a new car model that will never go 150 mph in traffic. The results should be there for the asking, sure. But not center stage. If you see hindcasting as a major part of science communication around climate models you are looking at the communication in a different way from me. It’s safe to assume that neither of us has the right way to look so we both should be careful about what we say about them. I’ll certainly look out for exaggerated hindcasting language in the future. Maybe you can look beyond that.

Remember though I said that models were “ideally constructed from scratch in independent, competitive research groups” – well, not all of them are. There are connections between some research groups but not others. So some researchers are wondering if all the models should be treated equally, they question the model democracy, as they put it. This is brand new stuff. The suggestion is to weight the models and then to do weighted averages. In real life you would be using that technique maybe to locate a sports arena that several clubs will be using – and you want to giving the club with a 100 actives more say than the clubs with 25, 33 or 50 players. So you weight their respective answers with the number of members. In the case of the models the categories that could be used for weighting are independence – the unique efforts get more say – and skill in hindcasting. So there still is not what you wanted, the single best model, but more of a unified voice of them.

Finally to put the whole business into a framing you might understand (and I find weird examples work best to get points across): If you were to hold the secret theory that creating Dilbert was inevitable given your life’s twists and turns – how would you test that? You could recruit a number of young, very young kids and subject about half of them to the same experiences you had to see if they came up with a similar syndicated cartoon series. You would have control groups that get different experiences to test correlates: Could a woman become Scott Adams? Would there be Dilbert if there hadn’t been Little Nemo, Peanuts or Doonesbury before?

And since this in reality would be impossible or inhumane to subject people to you would think of models to give you an answer. Models, in plural, because if you only relied on one you could so easily get it wrong and never even know about it.

If you are seriously interested, it is a good idea to do this in plural. Scientists are seriously interested. And as a citizen following science news you would be better off not pushing for answers that leave out the best science has to offer. And that doesn’t just apply to models, that goes for most of your demands.

Wettervorhersage für die Arktis

Hamburg, 18.11.2016

Ein kleiner Blick ganz nach Norden, wo zurzeit erstaunliche Dinge passieren. Sie lassen sich am besten mit einer Reihe von Grafiken erklären. Die erste stammt von der Seite Arctic News: Es ist eine Wettervorhersage für morgen, Samstag den 19.11.2016. Die Polarregion wird demnach gut sieben Grad Celsius wärmer sein als im Durchschnitt der Jahre 1979 bis 2000.

arctic-forecastWettervorhersage für die Arktis. Quelle: Arctic News

Und das ist kein Ausreißer, das ist seit Wochen so, wie das dänische Meteorologische Institut zeigt. Seit etwa zwölf Wochen ist es nördlich des 80. Breitengrades wärmer als im Durchschnitt und zuletzt waren es sogar fast 20 Grad zu viel. Das lässt sich allerdings nicht direkt mit der Vorhersage oben vergleichen, weil die Zeiträume für die Bildung des Mittelwerts unterschiedlich sind, hier geht es um die Jahre 1958 bis 2002. Bitte auch beachten, die Zahlenwerte sind bei der dänischen Grafik in Grad Kelvin angegeben. Der Nullpunkt der Celsius-Skala liegt bei 273,15 Kelvin. Die Arktis sei „wahnsinnige“ 20 Grad wärmer als normal, schrieb dazu die Washington Post.

arctictempsdmiTemperaturen nördlich des 80. Breitengrads. Quelle: Dänisches Meteorologisches Institut

Die nächste Grafik zeigt, dass die übermäßige Wärme nicht nur an der Oberfläche herrscht, sondern vor allem in der Höhe. Das ist hier verwirrend aufgezeichnet: Die Höhe ist unten, die Meeresoberfläche oben. Da war es im Oktober 2016 auch mal ein wenig kühler als üblich (gemeint hier: im Durchschnitt über 1981 bis 2010). Aber darüber und bis weit nach Süden ist es deutlich zu warm, schreibt das National Snow & Ice Data Center der USA, von dem die Grafik stammt.

t-anomalyDurchschnittstemperaturen im Norden im Oktober, aufgetragen gegen die Höhe.
Quelle: NSIDC

Die Wissenschaftler erklären das mit sehr ungewöhnlichen Druckverhältnissen, die sehr viel warme Luft nach Norden lenken. Man kann das gut auf dieser Kartendarstellung erkennen, wo die warme Luft fließt. Außerdem sei das Meer sehr warm, weil es dieses Jahr sehr lange frei war und viel Sonnenlicht absorbieren konnte. Das hier gezeigte Niveau von 925 Hekto-Pascal liegt bei ungefähr 2500 Fuß, also 750 Metern. Und der 60. Breitengrad aus der oberen Grafik bildet hier unten den Rand der Abbildung. Er führt ungefähr durch Oslo, die Südspitze Grönland und an der Südküste Alaskas entlang.

airtempanomaly-karteDer Einstrom warmer Luft nach Norden. Quelle: NSIDC

Diese übermäßige Wärme hatte es auch schon im Frühjahr 2016 gegeben, wie ein weiterer Blick auf die dänische Grafik zeigt. Nicht ganz so spektakulär, aber deutlich. Eine Parallele zeigt sich in der Ausdehnung des Meereises. Dessen Größe schwankt mit den Jahreszeiten, für gewöhnlich überdeckt es im März die größte Fläche und erreicht im September sein Minimum. Zu dem Zeitpunkt hat 2016 keinen Rekord aufgestellt, aber im Frühjahr etliche Wochen lang. Und seit Mitte Oktober gibt es wieder jeden Tag einen neuen Tiefstand in der Zeitreihe.

charctic-interactive-sea-ice-graph-arctic-sea-ice-news-and-analysisDie Ausdehnung des Meereises in der Arktis im Vergleich der Jahre. Quelle: NSIDC

Gestern, am 17.11.2016, waren 8,62 Millionen Quadratkilometer Meeresoberfläche zu mindestens 15 Prozent mit schwimmendem Eis bedeckt. Das sind gut 400 000 weniger als im Rekordjahr 2012 und eine Million Quadratkilometer weniger als am gleichen Tag 2015. Nur so zum Vergleich: Deutschland hat etwa 357 000 Quadratkilometer Fläche. Normal ist das nicht.



Das Zeitalter der Pilzwolken

Bekanntes Foto des Baker-Tests. Die durch die Druckwelle hervorgerufene Wilson-Wolke hat sich teilweise aufgelöst und gibt den Blick auf die Wassersäule und den blumenkohlförmigen Explosionspilz sowie die Flotte von Zielschiffen frei. Die Palmen am Strand wurden mit schwarzer und weißer Farbe angestrichen, um die Höhe der erwarteten Flutwelle messen zu können. Von United States Department of Defense (either the U.S. Army or the U.S. Navy)derivative work: Victorrocha (talk) - Operation_Crossroads_Baker_(wide).jpg, Gemeinfrei, 25. Juli 1946 ließen die Amerikaner auf dem Bikini-Atoll im Rahmen der „Operation Crossroads“ den Sprengsatz Baker 27 Meter unter Wasser detonieren. 93 ausgemusterte und erbeutete Schiffe und viele Versuchstiere wurden der Explosion ausgesetzt. Sie fiel so unerwartet heftig aus und verursachte solche Schäden, dass die Organisatoren den geplanten dritten Test absagten und später erst einmal wissenschaftliche Begriffe für die beobachteten Phänomene definieren mussten. Einige der radioaktiv verseuchten Schiffe wurden später im Pazifik von San Francisco versenkt. Quelle: United States Department of Defense/, gemeinfrei

Hamburg, 29. August 2016

There is now also an English translation of this entry

Hinweis: Dieser Blogbeitrag beruht auf zwei Artikeln von mir, die bei und in der Süddeutschen Zeitung erschienen sind. Ich habe sie hier zusammengefasst und ergänzt, und bringe sie vor allem, weil ich die alten Bilder so toll finde. Es lohnt sich, besonders beim Aufmacher-Bild, dem Link zu folgen. 

Das Zeitalter der Pilzwolken begann am 16. Juli 1945, morgens um halb sechs. An jenem Tag hatte sich die Elite der amerikanischen Physiker in der Wüste von New Mexico versammelt, knapp 60 Kilometer südwestlich von Socorro. Es war der erste Praxistest des Manhattan-Projekts, die erste Explosion einer Atombombe; Robert Oppenheimer hatte der Operation den Codenamen „Trinity“ gegeben. Den Sprengsatz selbst nannten die Entwickler flapsig „Gadget“, also Gerät oder Vorrichtung. Er steckte in einem mannshohen ausgebeulten Zylinder mit wildem Kabelgewirr auf der Außenseite. Sein Herzstück waren sechs Kilogramm Plutonium, und er erreichte eine Sprengkraft von etwa 21 Kilotonnen. Die Physiker hatten noch gewettet, welche Wucht der nukleare Sprengsatz erreichen würde. Die meisten unterschätzten die Explosion, nur Edward Teller war übermäßig optimistisch, so schildert es der Historiker Richard Rhodes in seinem Buch „The making of the Atomic Bomb“. Diese Zahl, um die die Experten gewettet hatten, ist nun von Radiochemikern des Los Alamos Nationallabors noch einmal mit einer ganz neuen Methode bestätigt worden.

Noch immer bietet die Geschichte der amerikanischen Atombomben Wissenschaftlern Ansatzpunkt für ihre Projekte. Sie interessieren sich für die nukleare Hinterlassenschaft der Pilzwolken-Ära: Neue Methoden erlauben Einblicke in die Funktionsweise der Sprengkörper. Die Erkenntnisse könnten bei der Überwachung künftiger Abrüstungsverträge helfen. Andere Forscher liefern frische Daten von vernachlässigten Schauplätzen der Historie wie den Südseeatollen von Enewetak, Rongelap und Bikini, wo die US-Armee fast 20 Jahre nach dem Krieg ihre Bombentests noch oberirdisch durchführte. Oder von einer Basis auf Grönland, Camp Century, von der aus die Amerikaner im Ernstfall Raketen gen Sowjet-Union starten wollten. Der Klimawandel könnte einige der Hinterlassenschaften freisetzen.

Die Trinity-Explosion ist zwar fast ein Menschenleben her, Augenzeugen dürfte es daher nur noch wenige geben. Immerhin: Neben den Physikern waren auch viele junge Soldaten anwesend, und auch Kinder der normalen Bevölkerung von New Mexico erlebten den plötzlichen Blitz mit. Mit Geigerzählern oder anderen herkömmlichen Instrumenten ist das Ereignis noch heute an damaligen Ground Zero, den die Öffentlichkeit zweimal im Jahr besuchen kann, ohne weiteres nachvollziehbar. Die Strahlung ist etwa zehnmal so hoch wie sonst in den USA. Doch Einzelheiten der Bombe buchstäblich aus dem Sand zu lesen – das ist mal ein neuer Ansatz.

Die Forscher um Susan Hanson brauchten dafür nur fünf Stückchen Glas von der Explosionsstelle, nicht einmal zehn Gramm. Die intensive Hitze des Tests hatte hier den Sand geschmolzen und dabei auch Spaltprodukte der Kettenreaktion eingeschlossen. Und obwohl in den Proben 70 Jahre lang weiter unzählige radioaktive Zerfallsprozesse abgelaufen waren, konnten die Forscher Bauart und Effektivität der Bombe daraus bestimmen. Für die Sprengkraft brauchten sie nur die historisch überlieferte Menge Plutonium und kamen so auf 22,1 Kilotonnen, das deckt sich im Rahmen der Messgenauigkeit mit bisherigen Angaben. Die Wissenschaftler richten den Blick nun nach vorn. „Ein solches Verfahren könnte die Zeitspanne erweitern, in der man Daten für Inspektionen sammelt“, schließt das Team von Hanson aus dem Erfolg. „Das würde auf absehbare Zukunft die Überprüfung von Abrüstungs-Verträgen verbessern.“ Sie haben ihre Resultate in PNAS veröffentlicht.

Norris Bradbury, im Manhattan-Projekt zuständig für die Montage der „Gadget“ genannten ersten Atombombe, und seine Kreation. Quelle: US-Regierung, flickr

Im Fall Trinity war der Kniff, in den Proben nicht nach strahlenden Resten, sondern nach stabilen Atomen zu suchen, genauer nach Molybdän-Isotopen. Neun von ihnen sind bekannt, sieben davon sind stabil, ihr Atomgewicht liegt zwischen 92 und 100. Sie haben jeweils ihren festen Anteil am natürlichen Vorkommen, der zwischen neun und 24 Prozent liegt. Diese Verteilung hatte sich in den Glasproben allerdings verschoben. Die Isotope Mo-95 und Mo-97 nämlich stehen jeweils am Ende einer Zerfallskette, in denen sich die Reste der im Feuerball der Explosion gespaltenen Plutoniumatome immer weiter umwandeln, bis sie einen stabilen Atomkern formen können. Die beiden Isotope wurden also als Folge der radioaktiven Prozesse häufiger. Bei Molybdän-96 hingegen passierte das nur im Millionstel-Bereich, denn hier endet die Zerfallskette schon vorher. Das Team um Hanson konnte also aus den Relationen Mo-95/Mo-96 und Mo-97/Mo-96 ablesen, wie die Explosion abgelaufen war. Zusammen mit dem Plutoniumgehalt der Proben ließen sich so die Anzahl der gespaltenen Atome und die Sprengkraft von „Gadget“ errechnen.

Nach dem ersten Test in New Mexico hatten die Amerikaner im August 1945 zwei Bomben auf die japanischen Städte Hiroshima und Nagasaki geworfen. Danach folgten noch Dutzende weiterer Tests – zur Sicherheit nicht auf eigenem Staatsgebiet, sondern auf den Südseeatollen. Obwohl Jahrzehnte vergangen sind, bleiben viele der Inseln dort verstrahlt: Die Zeit wird schließlich nicht unbedingt nach den Maßstäben der Menschen gemessen, sondern in der Halbwertszeit des gefährlichsten verbliebenen Spaltprodukts der damaligen Detonationen: Cäsium-137, dessen Menge sich nur alle 30 Jahre halbiert. Wie viel Strahlung wirklich noch da ist, wussten offizielle Stellen aber offenbar nicht genau – bis ein Team um Autumn Bordner von der Columbia-University mal nachgeschaut hat. Die Forscher charteten sich im Sommer 2015 ein Boot und steuerten innerhalb von zwei Wochen im August 2015 sechs der Inselgruppen an. Ihre Daten haben sie ebenfalls bei PNAS veröffentlicht.

Es zeigte sich, dass zumindest die Insel Enewetak, wo bereits wieder fast 1000 Menschen leben, einigermaßen sicher ist. Die Forscher fanden Dosisraten von 0,04 bis 0,17 Millisievert pro Jahr (msv/a), die von außen, also aus Boden, Wasser und Pflanzen auf Bewohner der Insel einwirkten. Als Mittelwert nennen sie 0,08 msv/a; nur auf einem Fleck an der Südspitze zeigten die Mess-Instrumente deutlich mehr, nämlich 0,4 msv/a. Als Grenzwert der zusätzlichen Strahlenbelastung in Folge der Atomtests haben die USA und die Marshall-Inseln gemeinsam eine Dosis von einem Millisievert pro Jahr festgelegt; nach dieser Angabe sollte beurteilt werden, ob frühere Bewohner der Inseln oder ihre Nachkommen sie wieder bewohnen können. Das gleiche Limit gilt in Deutschland.

Allerdings sollten bei Messungen wie denen des Columbia-Teams nicht mehr als zehn oder 15 Prozent des Grenzwertes ausgeschöpft werden. Die äußere Umgebung ist ja nur ein Strahlungsfaktor, wenn die Menschen auch womöglich belastete, lokale Nahrungsmittel essen und Radioaktivität im Wasser zu sich nehmen. Diese Bedingung ist zumindest auf Enewetak weitestgehend erfüllt, wo die Umwelt im Mittel acht Prozent des Limits ausmacht. Die Strahlungswerte sind damit vergleichbar mit denen auf dem kaum belasteten Majuro-Atoll, wo in der Hauptstadt des Landes heute viele der Staatsbürger beengt leben.

Die Entwarnung gilt aber nicht für das berüchtigte Rongelap, das immer noch unter der Nuklear-Geschichte leidet. Die Insel war beim Atomtest Castle Bravo 1954 von einer Wolke von Fall-Out getroffen worden. Weil sowohl die Bombe als auch der Wind sich anders verhielten als vorausberechnet, hatte die US-Armee die 64 Bewohner nicht evakuiert. Als radioaktive Asche auf die Insel regnete, rieben Kinder sie sich im Spiel in die Haare, sie drang in alle Hütten ein und verseuchte die Zisternen. Viele Bewohner erkrankten an akuter Strahlenkrankheit, etliche starben daran, obwohl die Amerikaner bald alle Insulaner fortbrachten.

Schon 1957 aber transportierte man die Überlebenden zurück und beharrte trotz zahlreicher Krebsfälle bis 1982 darauf, die Insel sei sicher. Auch danach wurden die Bewohner aber nicht ungesiedelt, bis Greenpeace mit seinem Schiff Rainbow Warrior die Bevölkerung 1985 auf ein Nachbaratoll brachte. Danach begann ein umstrittenes Reinigungsprogramm für die Insel. 1994 empfahl der amerikanische Forschungsrat, die Bewohner sollten bei einer Rückkehr ihre Lebensmittel zum Beispiel nur im Süden des Atolls sammeln, doch bislang haben sich die Marshallesen noch nicht darauf eingelassen. Als jetzt die Forscher aus New York auf Rongelap landeten, lagen die Strahlungswerte zwischen 0,06 und 0,55 msv/a; als Mittelwert berechneten sie 0,2 msv/a. Auf vielen Teilen der Insel gab es also zu viel Strahlung für eine Wiederbesiedlung, sollten sich die Zurückgekehrten von Fisch und lokalen Früchten ernähren.

10561566153_5c67d58c37_oZehn Jahre nach den letzten Tests, also in den frühen 1970er-Jahren, durften
einige Einwohner von Bikini auf ihre Inseln zurückkehren. Doch die Strahlungswerte
waren damals – wie heute – zu hoch, so dass die Menschen schließlich doch
wieder evakuiert werden mussten. Quelle:, flickr

Noch schlimmer waren die Werte auf Bikini: Hier lag schon der Mittelwert bei 1,8, die Spitzen übertrafen 6,5 msv/a. Und auf beiden Inseln, so stellten die Wissenschaftler fest, hatte man die möglichen Belastungen deutlich unterschätzt. Die gängigen Angaben waren nämlich aus Messungen berechnet, die zum Teil 20 Jahre alt waren. Und sie beruhten auf Annahmen, wie viel Zeit die Bewohner wohl in ihren Häusern verbringen und wie oft sie im Freien sein würden. Die Forscher um Autumn Bordner lassen sich zu keinem Kommentar hinreißen, was sie von dieser Methode halten, sie stellen nur trocken fest: „Unsere Resultate stellen einen Widerspruch zu den Hochrechnungen auf Basis früherer Messungen dar.“ Auch die Historie, die sich vermeintlich nach einfachen Gesetzen der Physik weiterentwickelt, braucht eben ab und zu ein Update.

Die Wissenschaftler waren zudem auf der Insel Runit, die zum Enewetak-Atoll gehört. Hier haben die Amerikaner strahlende Abfälle ihrer Bomben in den Krater einer Explosion geschoben und unter einer dünnen Betonkuppel vergraben. Das Zeug basiert vor allem auf Plutonium-239, also eine Alpha-Strahler, und dafür war das Bordner-Team nicht gerüstet: Ihre Messgerät erfassten Gamma-Strahlung. Auch davon gab es auf Runit aber einiges: direkt neben dem Bunker zeigte das Instrument gut 0,4 msv/a. Die Werte seien aber keinesfalls repräsentativ, warnen die Forscher: Sie haben die Insel nicht komplett erfasst, wohl auch zur eigenen Sicherheit.

Runit nämlich ist „Amerikas vergessene Atom-Müllhalde“ sagt Michael Gerrard, Professor für Umwelt-Recht an der Columbia University. Es gebe nicht einmal Warnschilder, geschweige denn Wachen, berichtete der Wissenschaftler von einem Besuch 2010. Viele Abfälle haben die abrückenden Truppen einfach in die Lagune geschoben, andere, darunter die Trümmer eines atomaren Blindgängers (nur der konventionelle Sprengstoff zündete), in Plastiksäcken in den Krater geworfen, der bis unter den Meeresspiegel reicht und dessen Fels aus durchlässigen Korallen besteht. Eine richtige Säuberung der Insel hat die Supermacht verweigert, und sein Parlament dann sogar gegen die finanzielle Entschädigung für die Einheimischen gestimmt, die vorher vereinbart worden war, stellt Gerrard bitter fest. Eines Tages aber werde sich das Problem nicht mehr auf eine abgelegene Insel abschieben lassen: wenn die in den Fluten des Pazifik versinken, weil der Klimawandel den Meeresspiegel anhebt.

Der „Cactus Dome“, so benannt nach dem Atomtest, der auf Runit einen
mehr als hundert Meter großen Krater hinterlassen hat, verdeckt große
Mengen radioaktiven Mülls. Quelle: US Defense Special Weapons Agency/
Wikipedia, public domain

Das hat Runit mit Camp Century gemeinsam. Äußerlich verbindet die beiden Orte wenig: hier eine im Prinzip idyllische Südsee-Insel, dort ein im Prinzip unberührtes Stück im Norden des grönländischen Eispanzers. Und in Pazifik kommt das Wasser zum Atommülllager, während in der Arktis die Reste langsam ins Meer rutschen könnten.

In Grönland hatte die US-Armee 1959 eine geheime Basis acht Meter unter dem Eis errichtet (ein Film im Wochenschau-Stil aus der Zeit wurde offenbar erst Jahrzehnte später freigegeben). Bis zu 200 Soldaten wurden dort stationiert; sie erkundeten, ob sich Tunnel im Inlandeis als Standort für Mittelstrecken mit Atomsprengköpfen eigneten. Dazu kam es offenbar nie, weil sich das Eis innerhalb einiger Jahre schon damals als weniger stabil als erwartet erwies. Und als die Armee das „Project Iceworm“ und die Basis 1967 aufgab, ließ sie 200 000 Liter Diesel, 24 Millionen Liter Abwasser und beachtliche Mengen chemischer Abfallstoffe zurück. Sie nahm den damals im Camp installierten Nuklearreaktor mit, der Strom und Wärme geliefert hatte. Das verstrahlte Kühlwasser jedoch blieb in einer Eisgrube.

CampCentury1Am Anfang waren die Arbeiter noch optimistisch, dass die ins Eis gefrästen Tunnel
von Camp Century halten würden …

CampCentury2… doch bald drückte das Eis die „Wonderarch“ genannten Metallträger einfach ein.
Hier in einem Raum, der zum Kernreaktor der Basis gehörte.
Quelle: US-Army, Technical Report 174 von 1965

Noch versinken diese giftigen Hinterlassenschaften des Kalten Krieges immer weiter im Eis von Grönland, aber das Ende ist absehbar. „Es ist nicht mehr die Frage, ob Camp Century und die Schadstoffe darin eines Tages an die Oberfläche gelangen, sondern wann“, sagt Dirk van As vom Dänischen Geologischen Dienst in Kopenhagen. Der Klimawandel könnte die Verhältnisse im Norden Grönlands bis zum Ende dieses Jahrhunderts umkehren, und dann würden Abfälle der ehemaligen Basis vielleicht schon ab 2120 an die Oberfläche gelangen.

Van As und Kollegen aus Kanada, den USA und der Schweiz haben ein fast vergessenes Kapitel der amerikanischen Atombomben-Historie aufgeschlagen (Geophysical Research Letters, online). Was sie enthüllen, klingt ein wenig wie eine andere Auflösung für den Roman „Fräulein Smillas Gespür für Schnee“. Die Forscher haben inzwischen freigegebene Dokumente über die Basis ausgewertet. „Man war überzeugt, das Eis würde sich nicht bewegen und die Abfallstoffe blieben für die Ewigkeit eingeschlossen“, sagt van As. „Doch heute wissen wir, dass es ziemlich dynamisch ist.“

Weil Details in den Dokumenten fehlen, kann das Team nur spekulieren, dass die Basis „nicht triviale“ Mengen PCB (Polychlorierte Biphenyle) enthält. Die krebserregenden Chemikalien wurden als Frostschutz eingesetzt; Farbe aus jener Zeit, die in anderen Basen benutzt wurde, enthielt bis zu fünf Prozent PCB. Ihre Behälter und die Dieseltanks von Camp Century dürften längst zerdrückt worden sein. Der Inhalt, immer noch flüssig, ist nun vermutlich in Blasen eingeschlossen genau wie die damals deponierten flüssigen Abfälle.

Camp Century3Eine Skizze des Kernreaktors mit seinen Nebenanlagen, die die US-Army in den Eistunneln installiert hatte. Quelle: US-Army, Technical Report 174 von 1965

Die dafür angelegten Kavernen, ursprünglich 40 Meter tief, liegen inzwischen vermutlich 65 Meter unter der Oberfläche, weil diese durch Schneefall immer weiter aufsteigt. Den Simulationsrechnungen der Forscher zufolge geht das noch Jahrzehnte so weiter: einem Modell zufolge über 2100 hinaus, ein anderes sagt für 2090 eine Umkehr vorher. Schon einige Jahrzehnten danach könnten erste Risse und Spalten im Eis die ehemalige Basis erreichen und Abfallstoffe mobilisieren, falls der Klimawandel so weiter geht wie bisher. Sollte die Welt nach dem Vertrag von Paris die globale Erwärmung begrenzen, dürfte das die Freisetzung in Grönland verzögern, aber nicht verhindern.

Dass viele Details in ihrem Aufsatz fehlen, ist den Wissenschaftlern bewusst. „Wir wollten eigentlich den Ort besuchen und Messungen machen, aber wir haben keine Finanzierung bekommen“, sagt Dirk van As. Mehrmals wurde ihnen von Geldgebern bedeutet, das Thema sei politisch schwierig. Unter anderem bei der Nato hatten die Forscher nach eigener Aussage Geld beantragt. Die wissenschaftlichen Gutachten über das Projekt seien positiv gewesen, aber dann müsse mindestens ein Land sein Veto eingelegt haben. Van As’ Kollege William Colgan von der University of Toronto hat in Science das gleiche erzählt; Anfragen der US-Journalisten an die dänische und grönländische Regierung und das US-Militär um Stellungnahmen blieben danach unbeantwortet. „Vielleicht wird es nach der Studie und dem Echo in den Medien einfacher“, sagt Dirk van As. „Wir sollten Radarmessungen auf dem Eis machen, um festzustellen, wo was liegt.“

Wo das Meereis bleibt

Polar ice viewed from aboard the Norwegian Coast Guard vessel, "KV Svalbard", during Secretary-General Ban Ki-moon’s visit to the Polar ice rim to witness firsthand the impact of climate change on icebergs and glaciers. The visit is part of the UN Chief's campaign urging Member States to negotiate a fair, balanced and effective agreement at the UN Climate Change Conference in Copenhagen in December. 1/Sep/2009. Polar Ice Rim, Norway. UN Photo/Mark Garten.

Meereis vor Spitzbergen im September 2009, aufgenommen vom norwegischen Küstenwachboot KV Svalbard bei einem Besuch des UN-Generalsekretärs Ban Ki-moon,
Foto: UN Photo, Mark Garten,, flickr, creative commons licence

3. November 2015

Auf Spitzbergen hat der Klimawandel kurz der Jahrtausendwende richtig angefangen. Der Osten der Inselgruppe war bis dahin fest im Griff des Meereises. Wenn es dort 15 eisfreie Tage im Jahr gab, war das schon eine Ausnahme; mehr als 50 kamen praktisch nicht vor. Das begann sich in den späten 1990er-Jahren zu ändern: Der Trend der Jahr für Jahr erfassten eisfreien Tage knickte plötzlich nach oben. Den Maximalwert der historischen natürlichen Schwankungen, also jene 50 Tage, dürfte Spitzbergen etwa 2020 verlassen, und Mitte des Jahrhunderts ist an seiner Ostküste mit 100 eisfreien Tagen im Jahr zu rechnen, haben amerikanische Polarforscher berechnet. Es gehört damit zu den vielen Orten und Regionen rund um die Arktis, die bald verlässlich offenes Wasser vor sich haben werden.

„2050 werden die gesamte arktische Küste und der Großteil des Polarmeers 60 zusätzliche Tage von offenem Wasser erleben, und an vielen Orten werden es sogar 100 Tage sein“, fasst das Team um Katharine Barnhart von der University of Colorado in Boulder ihre Studie zusammen (Nature Climate Change, online, doi: 10.1038/nclimate2848). Die vier haben mit einem Computermodell berechnet, wie ungebremster Klimawandel die Geographie des Hohen Nordens ändern würde: Schließlich war das Eis in vielen Regionen eine feste Größe, dazu gehörten neben Ost-Spitzbergen auch die Ostküste Grönlands, Teile der kanadischen Inseln am Rande des Polarmeers und natürlich das Meer über dem Nordpol. In der ganzen Region beginnt  die Schmelzsaison früher und endet später.

Zurzeit ist diese Phase etwa Mitte September zu Ende. Dann erreicht das Meereis über die gesamte Arktis betrachtet seine geringste Ausdehnung, danach frieren wieder zehntausende Quadratkilometer zu (genauer: sie sind wieder zu mehr als 15 Prozent mit Gefrorenem bedeckt und fallen so aus der Kategorie „eisfrei“ heraus). Neben der jährlichen Durchschnittstemperatur ist die Meereis-Fläche am Ende der Schmelzsaison die zweite Größe, an der unter großer öffentlicher Anteilnahme die von natürlichen Schwankungen überlagerte Veränderung des Klimas abgelesen werden kann (siehe zum Beispiel Noaa und Doch die reine Zahl der Quadratkilometer Meereis ist nur eine sehr pauschale Größe.

Um eine Vorstellung davon zu bekommen, wann sich die Verhältnisse wo ändern, hat die Gruppe aus Boulder eine sogenannte Ensemble-Simulation ausgewertet. 30-mal wurde dafür das gleiche Klimamodell angeworfen, nachdem es mit jeweils leicht veränderten Ausgangswerten gefüttert worden war. Dieses Verfahren liefert eine Vorstellung davon, wie genau ein Ergebnis einer solchen Kalkulation bestimmt ist oder wie stark es von Zufällen abhängt . Das verleiht den Rechenwerten im besten Fall eine statistische Signifikanz. (Das Verfahren wird auch bei Wetterprognose verwendet: Wenn die Ergebnisse im Ensemble nahe beieinander liegen, und wenn auch die jeweils anderen Wetterdienste ähnliche Ergebnisse erzielen, getrauen sich Meteorologen, auch mal über längere Zeiträume als drei bis vier Tage eine Vorhersage zu machen.)

OpenWaterDaysArctic_Nov2015_Fig2Der Rückzug des ewigen Eises: Die Karte zeigt, in welchem Jahr eine Region der Arktis voraussichtlich zum letzten Mal für ein halbes Jahr von Eis bedeckt ist. Weiße Regionen hatten bisher stets offenes Wasser, das karierte Zentrum niemals. Grafik: Barnhart et al, Nature Climate Changeonline, doi: 10.1038/nclimate2848, Fig 2

Das Ergebnis ist zum Beispiel diese Karte. Sie zeigt, wann sich der Charakter einzelner Regionen der Arktis ändert, weil sie nun weniger als ein halbes Jahr von Eis eingeschlossen sind. In der kanadischen Hudson Bay (links unten) zum Beispiel ist der Prozess im Jahr 2040 abgeschlossen, entlang der grönländischen Küsten zieht sich das heute noch vorherrschende Eis ab 2025 nach Norden zurück. Mindestens 182 Tage Eis im Jahr gibt es dieser Simulation zufolge (sowie unter der Voraussetzung, dass die Staaten der Welt keinen wirksamen Klimaschutz beschließen) am Ende des Jahrhundert praktisch nur noch auf der grönländischen und ostkanadischen Seite des Polarmeeres, aber nicht mehr vor Alaska, und fast nicht mehr vor Sibirien.

Eine andere Studie hatte vor kurzem zudem gezeigt, dass der Arktis in den vergangenen Jahrzehnten sogar noch einiges erspart geblieben ist. Die Luftverschmutzung hat den Klimawandel in der Region abgemildert: 60 Prozent der Erwärmung, die Treibhausgase über das 20. Jahrhundert ausgelöst haben, wurden durch andere Emissionen abgepuffert, die in Form von Aerosolen in der Luft schweben. Die wichtigste Stoffgruppe dabei waren und sind Sulfate. Die Schwefel-Verbindungen, die auch bei Vulkanausbrüchen frei werden, kühlen das Klima ab, weil sie die Wolkenbildung verstärken. Ihnen entgegen wirken Rußpartikel, die in der Arktis niedergehen, und das Eis leicht grau färben. Es absorbiert dann eine Spur mehr Sonnenlicht und schmilzt schneller. Allerdings schützen die Sulfate das Eis stärker als Ruß es gefährdet.

Kanadische Forscher haben sich nun gefragt, wie das weitergeht. In den Zukunftszenarien, mit denen Klimaforscher gemeinhin rechnen, ist auch ein Rückgang der Luftverschmutzung eingeplant: Was aber passiert, wenn dieser Effekt trotz ansonsten leidlich effektiven Klimaschutzes (für Experten: RCP4.5) ausbleibt? Der Arktis, so ergibt die Rechnung von Marie-Ève Gagné und ihrer Kollegen vom kanadischen Umweltministerium, blieben dann die eisfreien Sommer ein weiteres gutes Jahrzehnt erspart: Statt 2045 passiert es erst 2057, dass die Meereis-Fläche im September unter die Grenze von einer Million Quadratkilometer fällt (Geophysical Research Letters, online, doi: 10.1002/2015GL065504). Das wäre deutlich weniger als zurzeit – 2014 waren es etwas mehr als fünf, im Jahr des Rekords 2012 immerhin 3,4 Millionen Quadratkilometer. Die schmutzige Luft wäre dann für das Meereis der Arktis sogar ein wenig vorteilhafter als ein insgesamt erfolgreicher Klimaschutz mit einer ehrgeizigen Senkung der Treibhausgas-Emissionen. „Die Studie bedeutet aber nicht, dass wir keine Gesetze für saubere Luft haben sollten“, sagte Nathan Gillett, Gagnés Kollegen und Ko-Autor, der Webseite Climate Central. „Viele Untersuchungen haben schließlich gezeigt, dass die Reduktion der Aerosole insgesamt große Vorteile bringt.“

Christopher Schrader, alle Recht vorbehalten