Schlagwort-Archive: Aerosole

Aerosole: Problem gelöst?

sphinx11

Das Sphinx-Observatorium auf dem Jungfraujoch ragt so eben noch aus den Wolken. Foto: Paul Scherrer Institut/ Julie Cozic

 

Update: Diesen Beitrag habe ich am 29. Juni 2016 um eine Stellungnahme von Wissenschaftler aus Leipzig ergänzt

Hamburg, 26. Mai 2016

Das Jungfraujoch in den Berner Alpen beherbergt nicht nur den höchsten Bahnhof Europas, sondern auch das „Sphinx“ genannte Observatorium in 3580 Metern über dem Meeresspiegel. Wenn es sich in Wolken hüllt, wie auf dem Foto, sind vielleicht die Touristen enttäuscht, aber Forscher wie Urs Baltensperger vom Paul-Scherer-Institut in Villigen im Kanton Aargau sind in ihrem Element. Baltensperger ist Atmosphären-Chemiker und Mitglied mehrerer internationaler Forschungsgruppen, die auf dem Jungfraujoch und am Forschungszentrum Cern in Genf die Entstehung von Wolken untersuchen. An den jüngsten Daten der Teams entzündet sich nun eine interessante forschungspolitische Diskussion (wer gleich dorthin springen möchte, findet sie auf der zweiten Seite; hier folgt zunächst eine Einbettung.)

Damit sich der Wasserdampf in der Luft zu kleinen Tröpfchen verflüssigen kann, die dann wie weiße Schleier oder Wattebausche über den Himmel driften oder später als Regentropfen zu Boden fallen, braucht er Kondensationskeime. Das sind kleine Partikel, die in der Luft schweben, 50 bis 100 Nanometer (Millionstel Millimeter) groß. Etwa die Hälfte von ihnen bestehen aus Staub, Sand, Russ oder Meersalz; seit kurzem weiß man auch, dass Pflanzenpollen oder Pilzsporen solche primären Kondensationskeime bilden können. Die andere Hälfte heißt sekundär, weil sie sich in der Atmosphäre neu bilden. Dazu müssen sich allerdings viele Moleküle wie Ammoniak oder ätherische Duftstoffe sowie deren oxidierte Folgeprodukte zu Clustern zusammenfinden. Sie sind zunächst, wenn sie nur aus zwei Partnern bestehen, oft instabil und brauchen einen guten Klebstoff, um noch zusammen zu sein, wenn die Moleküle 3, 4, 5 und so weiter angedriftet kommen.

Ein wichtiger Klebstoff ist Schwefelsäure (H2SO4). Sie bildet sich in der Atmosphäre aus Schwefeldioxid, das Vulkanausbrüche sowie allerhand industrielle Prozesse freisetzen. Die Menge dieses Luftschadstoffs hat derart zugenommen, dass sich Forscher gar nicht erklären konnten, wie sekundäre Kondensationskeime ohne Schwefelsäure überhaupt entstehen konnten. „Bislang dachten wir immer, wir bräuchten einen Zwei-Komponenten-Kleber zum Beispiel aus organischen Molekülen und Schwefelsäure“, sagt Joachim Curtius von der Universität Frankfurt/Main in einem Artikel von mir in der Süddeutschen Zeitung. „Jetzt zeigt sich: Die erste Komponente reicht, wenn kosmische Strahlung dazu kommt.“* Curtius, Baltensperger und viele andere Forscher haben in dieser Woche dazu gleich drei Studien in hochrangigen Journalen veröffentlicht. In Nature steht, wie sich die Molekül-Cluster im Laborexperiment ohne Schwefelsäure bilden und zu geeigneten Kondensationskeimen heranwachsen. Und in Science berichten die Wissenschaftler, dass ähnliche Prozesse auch in der freien Atmosphäre über dem Jungfraujoch zu beobachten sind. Die Redaktion in Washington hat dafür sogar ihre Sperrfrist um einen Tag verkürzt, damit das Paper zum gleichen Zeitpunkt erscheint wie die beiden in London.

Letztlich bedeutet das: Die industriellen Aerosole sind weniger bedeutend als die Wissenschaft lange befürchtet hatte. Diese Angst stammt aus einer früheren Zeit, als die Erwärmung der Atmosphäre noch nicht so deutlich zu messen war. Die Menge an Kohlendioxid war zwar gestiegen, aber es schwebte auch viel Schwefelsäure in der Luft. Forscher nahmen also an, dass eine deutliche Aufheizung durch CO2 durch eine ebenso deutliche Abkühlung wegen des H2SO4 mehr oder minder kompensiert würde. Oder sie konnten es jedenfalls nicht ausschließen – und so wurde der Ausblick in die Zukunft noch weniger zuverlässig. Es bedeutete nicht nur eine Komplikation für das Design von Klimamodellen, die die Entwickung der Temperaturen sowie von Niederschlägen berechnen sollten. Sondern hier lauerte auch die Gefahr, dass die erwünschte Reinigung der Luft von Industrieabgasen mit ihren Schwefelausdünstungen den fühlbaren Klimawandel plötzlich beschleunigen könnte. Diese Sorge ist gebannt, wenn Schwefelsäure weniger wichtig für die Wolkenbildung ist als lange angenommen.

Weiter auf Seite 2

 

 

 

* In diesem Beitrag soll es nicht um das eben gefallene Reizwort „kosmische Strahlung“ gehen: Wer sich dafür interessiert, kann das in meinem SZ-Artikel und/oder in dieser Fußnote nachlesen. Kosmische Strahlung ist vor allem in der Diskussion mit oft verbohrten Kritikern der etablierten Klimaforschung zum Streitpunkt geworden, ich nenne sie mal die Kalte-Sonne-Fraktion. Deren Argument geht so: Das Magnetfeld der Sonne lässt manchmal mehr und manchmal weniger kosmischen Strahlen durch. Da diese wiederum einen Einfluss auf die Wolkenbildung besitzen, könnten sie den Wärmehaushalt der Erde beeinflussen – weniger kosmische Strahlung, weniger Wolken, mehr Sonnenlicht erreicht die Oberfläche, höhere Temperaturen. So ungefähr. Manche Kritiker destillieren aus dieser Möglichkeit die Behauptung, kosmische Strahlen und nicht die Treibhausgase seien die eigentliche Ursache der globalen Erwärmung – sämtliche politischen Initiativen zum Klimaschutz also sinnlos.

Diese These ist aus vielen Blickwinkeln beleuchtet worden und nirgends fand sich ein Beleg. Auch das Labor-Experiment CLOUD von Curtius, Baltensperger und anderen hat in etlichen Versuchsreihen keine geliefert. So ist es auch diesmal. Zwar können kosmische Strahlen die Entstehung der ersten kleinen Cluster mit einer Größe von ein bis zwei Nanometern deutlich verbessern, aber auf das Wachstum zum Kondensationskeim von 50 bis 100 Nanometern haben sie nach Aussage der Forscher „keinen Einfluss“. Zudem gibt es seit Beginn der Industrialisierung so viel Schwefelsäure in der Atmosphäre, dass die Dienste der kosmischen Partikel kaum noch gebraucht werden. Sie können vielleicht erklären, warum die Erde in früheren Epochen stärker auf die Veränderungen im Strahlungseinfall reagiert hat, aber sicherlich nicht, warum sie sich in der jüngeren Vergangenheit erwärmt hat.

 

Aerosole: Problem gelöst? Seite 2

IMG_4252

Wolken über Berlin – bei Sonnenuntergang von unten beleuchtet. Schwefelsäure in der Atmosphäre hat bei der Bildung sicherlich mitgeholfen. Foto: C. Schrader 

 

Hamburg, 26. Mai 2016

Fortsetzung von Seite 1

Aus diesem wissenschaftlichen Erfolg entspinnt sich eine interessante forschungspolitische Diskussion, die ich in meinem SZ-Artikel nur anreiße, und hier vertiefen will. Bjorn Stevens, Direktor am Max-Planck-Institut für Meteorologie in Hamburg, verbindet sein Lob für die Ergebnisse aus der Schweiz mit einer Forderung, die den Autoren der Studien kaum gefallen dürfte. Da sich die Aerosole als wenig bedeutsam gezeigt haben, solle man sie gleich ganz aus den Simulationen nehmen und die Erforschung ihrer Effekte auf das Klima einstellen. „Insofern bedeuten die Messungen einen großen Sieg: Wir können das zur Seite legen und uns wichtigeren Dingen widmen.“

Zur genaueren Erklärung hat Stevens nach dem Interview noch eine E-Mail geschickt.

My point is that these studies support the assertion that we probably don’t need to better understand the aerosols to advance on what are some of the first rank problems related to understanding climate change.  As I mentioned yesterday, air pollution and human health are big issues, and science should work on problems that interest scientists (to some degree) so it would be unfair and incorrect to say that we should stop aerosol research.
I’m just trying to say that it is less central to understanding climate than we perhaps believed 10 or even a few years ago… or for that matter before this study.  And knowing what might be important (for a particular problem) is often a great step forward when researching something as complex as Earth’s climate.

Seine Position ist nicht ganz neu: Stevens hat das 2013 bereits in einen Kommentar in Nature geschrieben. Die damals besprochene Studie von Ken Carslaw (der auch zu dem Autoren der beiden neuen Nature-Studien gehört) und anderen in Leeds habe gezeigt, so Stevens, dass „wenn es einen Aerosol-Joker gab, dann wurde er bereits vor einem Jahrhundert gespielt und ist irrelevant für das Verständnis momentaner und künftiger Veränderungen des globalen Klimas geworden“.

Diese Logik leuchtete damals nicht unbedingt jedem ein, forderten doch die Autoren der Studie, man müsse mehr über die „unverdorbene vor-industrielle Umwelt“ erfahren. Die natürlichen Aerosole trügen 45 Prozent zur heutigen Unsicherheit über die Wirkung der Schwebteilchen bei, die industriellen nur 34 Prozent. So groß erschien der Unterschied nicht, als dass man den kleineren Part einfach ignorieren könnte.

Doch inzwischen haben die Forscher um Baltensperger und Curtius ja Daten über die Verhältnisse vor der Industrialisierung geliefert. Sie lassen den Einfluss der industriellen Aerosole geringer als befürchtet erscheinen, also kann Stevens seine Forderung mit Verve wiederholen.

Es ist wenig Wunder, dass die Autoren der neuen Studien die Schlussfolgerung des MPI-Direktors nicht teilen. Joachim Curtius hat mir geschrieben:

Durch unsere Untersuchungen verbessert sich genau unser Verständnis der früheren, nicht durch Menschen belasteten Atmosphäre, und wir erreichen damit eine wesentliche Verringerung der Unsicherheit und unser bisheriges „poor knowledge“ wird verbessert. Das ist genau das was auch nach Herrn Stevens’ Meinung bisher gefehlt hat. Damit können wir die Aerosoleffekte jetzt genauer beziffern. Die Verringerung dieser Unsicherheit (die gleichzeitig die Unsicherheit beim Gesamtstrahlungsantrieb inkl. Treibhausgase dominiert) ist eine der ganz großen Herausforderungen und genau da tragen wir zur Verringerung der Unsicherheit bei und es ist in  meinen Augen höchst sinnvoll diesen Fragen weiter nachzugehen.  Und, ja, die Effekte werden wohl kleiner, aber sie werden nicht null.

Und Urs Baltensperger hat sich so geäußert:

Es ist zwar richtig, dass bei der heutigen Situation mit höheren Aerosolkonzentrationen eine Änderung von sagen wir 10% eine kleinere Auswirkung hat als in der vorindustriellen Zeit. (…) Dies bedeutet aber nicht, dass die Auswirkungen völlig egal wären; wir sprechen ja über viel größere Änderungen als 10%. (…) Der Strahlungsantrieb der Aerosole durch Wechselwirkung mit den Wolken  ist damit nach wie vor relevant, aber schlecht quantifiziert, und benötigt deshalb weitere Forschung, unter anderem, um die Effekte der vorindustriellen Zeit und damit auch die Differenz besser quantifizieren zu können. (…) Daneben gibt es aber nach wie vor den direkten Effekt der Aerosolpartikel mit der Strahlung (in unseren Papern gar nicht angesprochen), und da gibt es diesen Sättigungseffekt nicht. Ich kann aus diesen Gründen die Schlussfolgerungen absolut nicht nachvollziehen. Sie werden auch durch ständige Wiederholungen nicht richtiger.

Diese Diskussion hat unter anderem Bedeutung für das Design künftiger Klimamodelle: Brauchen Sie die zusätzliche Komplexität, die das Nachstellen der Aerosol-Chemie bedeutet oder nicht? Piers Foster von der Universität Leeds, der wie Stevens ein Lead Author des entsprechenden Kapitels im fünften Bericht des IPCC war, nimmt eine Art Mittelposition ein und wirbt für Pragmatismus – vor allem weil die Aerosole viel Rechenzeit verbrauchen.

I think the wider climate community needs to move to suites of related climate models with different degrees of complexities, so you can choose your climate model depending on the question you want to answer. The new UK Earth system model which is just going online is a case in point. Colleagues at Leeds, led by Ken Carslaw (author of the Nature papers) led the development of the aerosol scheme within this model. It contains the complexities talked about in the Nature papers, so it is a good one.
However, they are very computational expensive models to run and around 75% of the computer time within the Earth system model is taken up by the interactive chemistry and aerosol scheme. This severely limits the experiments we can do with it. So I think we also need the stripped down models with simplistic aerosol schemes – and these simple models can be used to explore many other very important problems in climate change not related to aerosols.

In der Tat empfiehlt aber auch er seinen Kollegen, bei ihren Forschungsanträgen in Zukunft nicht mehr zu betonen, die Aerosole machten die größte Unsicherheit in der Klimaberechnung aus. Das stimme einfach nicht mehr. „Die Aerosol-Community hat großartige Arbeit geleistet und es gibt noch viele Fragen, denen sie sich widmen kann: Luftqualität und der Beitrag der Aerosole zur Klimavariabilität sind zwei interessante.“
 

Ergänzung am 29. Juni 2016

Mehrere Wissenschaftler des Leibniz-Instituts für Troposphärenforschung in Leipzig und von der dortigen Universität haben mich gebeten, hier auch ihre Stellungnahme zu der These von  Bjorn Stevens zu dokumentieren.

Dieser Aussage möchten wir ausdrücklich widersprechen. Generell ist es sehr problematisch, aus den Untersuchungsergebnissen zu einigen organischen Partikelbestandteilen direkt auf deren Auswirkung auf die Wolkenbildung auf klimarelevanten Skalen zu schließen. Klimamodelle können Aerosol-Wolkenprozesse noch nicht ausreichend realistisch abbilden. Daher kann die Bedeutung der neuen Ergebnisse für die Klimaentwicklung nicht ohne weiteres abgeleitet werden. Dass die Einflüsse atmosphärischer Aerosolpartikel auf das Klima im Allgemeinen nicht ignoriert werden sollten, wird auch in einer gerade erschienenen, thematisch relevanten Veröffentlichung in der renommierten amerikanischen Fachzeitschrift ‚Proceedings of the National Academy of Sciences’ verdeutlicht (Seinfeld et al 2016). Hier stellen die Autoren heraus, dass selbst bei einer Verringerung der Empfindlichkeit von Wolkeneigenschaften in Bezug auf Aerosolpartikeln, es in Zukunft, z.B. auf Grund der sinkenden Partikelkonzentrationen, nicht weniger wichtig wird, die von ihnen verursachten Modifikation des Treibhauseffekts und damit ihre Wirkung auf das Erdsystem besser zu verstehen.

Die Schlussfolgerung, dass die Rolle von Aerosolpartikeln im Klimasystem verstanden, ihre Auswirkungen hinreichend geklärt und quantifiziert wären und somit zu diesem Themenkomplex nicht weiter geforscht werden solle, ist also in keiner Weise nachvollziehbar.

gez. Ina Tegen, Hartmut Herrmann, Andreas Macke, Frank Stratmann, Ulla Wandinger, Alfred Wiedensohler (Leibniz-Institut für Troposphärenforschung); Johannes Quaas, Manfred Wendisch (Leipziger Institut für Meteorologie, Universität Leipzig)

Zurück zur Startseite

Wo das Meereis bleibt

Polar ice viewed from aboard the Norwegian Coast Guard vessel, "KV Svalbard", during Secretary-General Ban Ki-moon’s visit to the Polar ice rim to witness firsthand the impact of climate change on icebergs and glaciers. The visit is part of the UN Chief's campaign urging Member States to negotiate a fair, balanced and effective agreement at the UN Climate Change Conference in Copenhagen in December. 1/Sep/2009. Polar Ice Rim, Norway. UN Photo/Mark Garten. www.un.org/av/photo/

Meereis vor Spitzbergen im September 2009, aufgenommen vom norwegischen Küstenwachboot KV Svalbard bei einem Besuch des UN-Generalsekretärs Ban Ki-moon,
Foto: UN Photo, Mark Garten, www.un.org/av/photo, flickr, creative commons licence

3. November 2015

Auf Spitzbergen hat der Klimawandel kurz der Jahrtausendwende richtig angefangen. Der Osten der Inselgruppe war bis dahin fest im Griff des Meereises. Wenn es dort 15 eisfreie Tage im Jahr gab, war das schon eine Ausnahme; mehr als 50 kamen praktisch nicht vor. Das begann sich in den späten 1990er-Jahren zu ändern: Der Trend der Jahr für Jahr erfassten eisfreien Tage knickte plötzlich nach oben. Den Maximalwert der historischen natürlichen Schwankungen, also jene 50 Tage, dürfte Spitzbergen etwa 2020 verlassen, und Mitte des Jahrhunderts ist an seiner Ostküste mit 100 eisfreien Tagen im Jahr zu rechnen, haben amerikanische Polarforscher berechnet. Es gehört damit zu den vielen Orten und Regionen rund um die Arktis, die bald verlässlich offenes Wasser vor sich haben werden.

„2050 werden die gesamte arktische Küste und der Großteil des Polarmeers 60 zusätzliche Tage von offenem Wasser erleben, und an vielen Orten werden es sogar 100 Tage sein“, fasst das Team um Katharine Barnhart von der University of Colorado in Boulder ihre Studie zusammen (Nature Climate Change, online, doi: 10.1038/nclimate2848). Die vier haben mit einem Computermodell berechnet, wie ungebremster Klimawandel die Geographie des Hohen Nordens ändern würde: Schließlich war das Eis in vielen Regionen eine feste Größe, dazu gehörten neben Ost-Spitzbergen auch die Ostküste Grönlands, Teile der kanadischen Inseln am Rande des Polarmeers und natürlich das Meer über dem Nordpol. In der ganzen Region beginnt  die Schmelzsaison früher und endet später.

Zurzeit ist diese Phase etwa Mitte September zu Ende. Dann erreicht das Meereis über die gesamte Arktis betrachtet seine geringste Ausdehnung, danach frieren wieder zehntausende Quadratkilometer zu (genauer: sie sind wieder zu mehr als 15 Prozent mit Gefrorenem bedeckt und fallen so aus der Kategorie „eisfrei“ heraus). Neben der jährlichen Durchschnittstemperatur ist die Meereis-Fläche am Ende der Schmelzsaison die zweite Größe, an der unter großer öffentlicher Anteilnahme die von natürlichen Schwankungen überlagerte Veränderung des Klimas abgelesen werden kann (siehe zum Beispiel Noaa und Meereisportal.de). Doch die reine Zahl der Quadratkilometer Meereis ist nur eine sehr pauschale Größe.

Um eine Vorstellung davon zu bekommen, wann sich die Verhältnisse wo ändern, hat die Gruppe aus Boulder eine sogenannte Ensemble-Simulation ausgewertet. 30-mal wurde dafür das gleiche Klimamodell angeworfen, nachdem es mit jeweils leicht veränderten Ausgangswerten gefüttert worden war. Dieses Verfahren liefert eine Vorstellung davon, wie genau ein Ergebnis einer solchen Kalkulation bestimmt ist oder wie stark es von Zufällen abhängt . Das verleiht den Rechenwerten im besten Fall eine statistische Signifikanz. (Das Verfahren wird auch bei Wetterprognose verwendet: Wenn die Ergebnisse im Ensemble nahe beieinander liegen, und wenn auch die jeweils anderen Wetterdienste ähnliche Ergebnisse erzielen, getrauen sich Meteorologen, auch mal über längere Zeiträume als drei bis vier Tage eine Vorhersage zu machen.)

OpenWaterDaysArctic_Nov2015_Fig2Der Rückzug des ewigen Eises: Die Karte zeigt, in welchem Jahr eine Region der Arktis voraussichtlich zum letzten Mal für ein halbes Jahr von Eis bedeckt ist. Weiße Regionen hatten bisher stets offenes Wasser, das karierte Zentrum niemals. Grafik: Barnhart et al, Nature Climate Changeonline, doi: 10.1038/nclimate2848, Fig 2

Das Ergebnis ist zum Beispiel diese Karte. Sie zeigt, wann sich der Charakter einzelner Regionen der Arktis ändert, weil sie nun weniger als ein halbes Jahr von Eis eingeschlossen sind. In der kanadischen Hudson Bay (links unten) zum Beispiel ist der Prozess im Jahr 2040 abgeschlossen, entlang der grönländischen Küsten zieht sich das heute noch vorherrschende Eis ab 2025 nach Norden zurück. Mindestens 182 Tage Eis im Jahr gibt es dieser Simulation zufolge (sowie unter der Voraussetzung, dass die Staaten der Welt keinen wirksamen Klimaschutz beschließen) am Ende des Jahrhundert praktisch nur noch auf der grönländischen und ostkanadischen Seite des Polarmeeres, aber nicht mehr vor Alaska, und fast nicht mehr vor Sibirien.

Eine andere Studie hatte vor kurzem zudem gezeigt, dass der Arktis in den vergangenen Jahrzehnten sogar noch einiges erspart geblieben ist. Die Luftverschmutzung hat den Klimawandel in der Region abgemildert: 60 Prozent der Erwärmung, die Treibhausgase über das 20. Jahrhundert ausgelöst haben, wurden durch andere Emissionen abgepuffert, die in Form von Aerosolen in der Luft schweben. Die wichtigste Stoffgruppe dabei waren und sind Sulfate. Die Schwefel-Verbindungen, die auch bei Vulkanausbrüchen frei werden, kühlen das Klima ab, weil sie die Wolkenbildung verstärken. Ihnen entgegen wirken Rußpartikel, die in der Arktis niedergehen, und das Eis leicht grau färben. Es absorbiert dann eine Spur mehr Sonnenlicht und schmilzt schneller. Allerdings schützen die Sulfate das Eis stärker als Ruß es gefährdet.

Kanadische Forscher haben sich nun gefragt, wie das weitergeht. In den Zukunftszenarien, mit denen Klimaforscher gemeinhin rechnen, ist auch ein Rückgang der Luftverschmutzung eingeplant: Was aber passiert, wenn dieser Effekt trotz ansonsten leidlich effektiven Klimaschutzes (für Experten: RCP4.5) ausbleibt? Der Arktis, so ergibt die Rechnung von Marie-Ève Gagné und ihrer Kollegen vom kanadischen Umweltministerium, blieben dann die eisfreien Sommer ein weiteres gutes Jahrzehnt erspart: Statt 2045 passiert es erst 2057, dass die Meereis-Fläche im September unter die Grenze von einer Million Quadratkilometer fällt (Geophysical Research Letters, online, doi: 10.1002/2015GL065504). Das wäre deutlich weniger als zurzeit – 2014 waren es etwas mehr als fünf, im Jahr des Rekords 2012 immerhin 3,4 Millionen Quadratkilometer. Die schmutzige Luft wäre dann für das Meereis der Arktis sogar ein wenig vorteilhafter als ein insgesamt erfolgreicher Klimaschutz mit einer ehrgeizigen Senkung der Treibhausgas-Emissionen. „Die Studie bedeutet aber nicht, dass wir keine Gesetze für saubere Luft haben sollten“, sagte Nathan Gillett, Gagnés Kollegen und Ko-Autor, der Webseite Climate Central. „Viele Untersuchungen haben schließlich gezeigt, dass die Reduktion der Aerosole insgesamt große Vorteile bringt.“

Christopher Schrader, alle Recht vorbehalten