Kleine Spitze auf einem Sattel vor einem größerem Massiv hinten. Alles ist schneebedeckt und Wolken umwehen die Spitze.

Aerosole: Problem gelöst?

Das Jungfraujoch in den Berner Alpen beherbergt nicht nur den höchsten Bahnhof Europas, sondern auch das „Sphinx“ genannte Observatorium in 3580 Metern über dem Meeresspiegel. Wenn es sich in Wolken hüllt, wie auf dem Foto, sind vielleicht die Touristen enttäuscht, aber Forscher wie Urs Baltensperger vom Paul-Scherer-Institut in Villigen im Kanton Aargau sind in ihrem Element. Baltensperger ist Atmosphären-Chemiker und Mitglied mehrerer internationaler Forschungsgruppen, die auf dem Jungfraujoch und am Forschungszentrum Cern in Genf die Entstehung von Wolken untersuchen. An den jüngsten Daten der Teams entzündet sich nun eine interessante forschungspolitische Diskussion (wer gleich dorthin springen möchte, findet sie auf der zweiten Seite; hier folgt zunächst eine Einbettung.)

Update: Diesen Beitrag habe ich am 29. Juni 2016 um eine Stellungnahme von Wissenschaftler aus Leipzig ergänzt

Damit sich der Wasserdampf in der Luft zu kleinen Tröpfchen verflüssigen kann, die dann wie weiße Schleier oder Wattebausche über den Himmel driften oder später als Regentropfen zu Boden fallen, braucht er Kondensationskeime. Das sind kleine Partikel, die in der Luft schweben, 50 bis 100 Nanometer (Millionstel Millimeter) groß. Etwa die Hälfte von ihnen bestehen aus Staub, Sand, Russ oder Meersalz; seit kurzem weiß man auch, dass Pflanzenpollen oder Pilzsporen solche primären Kondensationskeime bilden können. Die andere Hälfte heißt sekundär, weil sie sich in der Atmosphäre neu bilden. Dazu müssen sich allerdings viele Moleküle wie Ammoniak oder ätherische Duftstoffe sowie deren oxidierte Folgeprodukte zu Clustern zusammenfinden. Sie sind zunächst, wenn sie nur aus zwei Partnern bestehen, oft instabil und brauchen einen guten Klebstoff, um noch zusammen zu sein, wenn die Moleküle 3, 4, 5 und so weiter angedriftet kommen.

Ein wichtiger Klebstoff ist Schwefelsäure (H2SO4). Sie bildet sich in der Atmosphäre aus Schwefeldioxid, das Vulkanausbrüche sowie allerhand industrielle Prozesse freisetzen. Die Menge dieses Luftschadstoffs hat derart zugenommen, dass sich Forscher gar nicht erklären konnten, wie sekundäre Kondensationskeime ohne Schwefelsäure überhaupt entstehen konnten. „Bislang dachten wir immer, wir bräuchten einen Zwei-Komponenten-Kleber zum Beispiel aus organischen Molekülen und Schwefelsäure“, sagt Joachim Curtius von der Universität Frankfurt/Main in einem Artikel von mir in der Süddeutschen Zeitung. „Jetzt zeigt sich: Die erste Komponente reicht, wenn kosmische Strahlung dazu kommt.“*1 Curtius, Baltensperger und viele andere Forscher haben in dieser Woche dazu gleich drei Studien in hochrangigen Journalen veröffentlicht. In Nature steht, wie sich die Molekül-Cluster im Laborexperiment ohne Schwefelsäure bilden und zu geeigneten Kondensationskeimen heranwachsen. Und in Science berichten die Wissenschaftler, dass ähnliche Prozesse auch in der freien Atmosphäre über dem Jungfraujoch zu beobachten sind. Die Redaktion in Washington hat dafür sogar ihre Sperrfrist um einen Tag verkürzt, damit das Paper zum gleichen Zeitpunkt erscheint wie die beiden in London.

Letztlich bedeutet das: Die industriellen Aerosole sind weniger bedeutend als die Wissenschaft lange befürchtet hatte. Diese Angst stammt aus einer früheren Zeit, als die Erwärmung der Atmosphäre noch nicht so deutlich zu messen war. Die Menge an Kohlendioxid war zwar gestiegen, aber es schwebte auch viel Schwefelsäure in der Luft. Forscher nahmen also an, dass eine deutliche Aufheizung durch CO2 durch eine ebenso deutliche Abkühlung wegen des H2SO4 mehr oder minder kompensiert würde. Oder sie konnten es jedenfalls nicht ausschließen – und so wurde der Ausblick in die Zukunft noch weniger zuverlässig. Es bedeutete nicht nur eine Komplikation für das Design von Klimamodellen, die die Entwickung der Temperaturen sowie von Niederschlägen berechnen sollten. Sondern hier lauerte auch die Gefahr, dass die erwünschte Reinigung der Luft von Industrieabgasen mit ihren Schwefelausdünstungen den fühlbaren Klimawandel plötzlich beschleunigen könnte. Diese Sorge ist gebannt, wenn Schwefelsäure weniger wichtig für die Wolkenbildung ist als lange angenommen.

Weiter auf Seite 2

  1. In diesem Beitrag soll es nicht um das eben gefallene Reizwort „kosmische Strahlung“ gehen: Wer sich dafür interessiert, kann das in meinem SZ-Artikel und/oder in dieser Fußnote nachlesen. Kosmische Strahlung ist vor allem in der Diskussion mit oft verbohrten Kritikern der etablierten Klimaforschung zum Streitpunkt geworden, ich nenne sie mal die Kalte-Sonne-Fraktion. Deren Argument geht so: Das Magnetfeld der Sonne lässt manchmal mehr und manchmal weniger kosmischen Strahlen durch. Da diese wiederum einen Einfluss auf die Wolkenbildung besitzen, könnten sie den Wärmehaushalt der Erde beeinflussen – weniger kosmische Strahlung, weniger Wolken, mehr Sonnenlicht erreicht die Oberfläche, höhere Temperaturen. So ungefähr. Manche Kritiker destillieren aus dieser Möglichkeit die Behauptung, kosmische Strahlen und nicht die Treibhausgase seien die eigentliche Ursache der globalen Erwärmung – sämtliche politischen Initiativen zum Klimaschutz also sinnlos.
    Diese These ist aus vielen Blickwinkeln beleuchtet worden und nirgends fand sich ein Beleg. Auch das Labor-Experiment CLOUD von Curtius, Baltensperger und anderen hat in etlichen Versuchsreihen keine geliefert. So ist es auch diesmal. Zwar können kosmische Strahlen die Entstehung der ersten kleinen Cluster mit einer Größe von ein bis zwei Nanometern deutlich verbessern, aber auf das Wachstum zum Kondensationskeim von 50 bis 100 Nanometern haben sie nach Aussage der Forscher „keinen Einfluss“. Zudem gibt es seit Beginn der Industrialisierung so viel Schwefelsäure in der Atmosphäre, dass die Dienste der kosmischen Partikel kaum noch gebraucht werden. Sie können vielleicht erklären, warum die Erde in früheren Epochen stärker auf die Veränderungen im Strahlungseinfall reagiert hat, aber sicherlich nicht, warum sie sich in der jüngeren Vergangenheit erwärmt hat. ↩︎

Beitrag veröffentlicht

in

,

von