Schlagwort-Archive: Simulation

Scientific method and so-called skeptics

This is an addendum to the answer I have tried to give to Scott Adams‘ (the creator of Dilbert)
question on why science can’t seem to persuade climate skeptics. The basic answer is: Because they don’t want to be convinced. Maybe I should leave it at that, but I feel that maybe some people could indeed benefit by discussing the finer points of the methods of science Adams is targeting with his post. So this is for those specialists (this post not being announced anywhere but at the end of the main answer I have given).

Dear Scott Adams, I’ll dip into some of your points 1 through 14 here. I’ll go at my own pace, I am not necessarily going to jump the hoops you hold up. If you want to skip ahead: I will be dealing with

For starters this business about supplying a number, a percentage of how much of global warming was man-made. The IPCC said in 2013: “It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century.“ The UN-body elsewhere defines “extremely likely” as 95 to 100 percent probability. But it doesn’t give a number for “dominant”.

Let’s figure this out. Since the only other category except human influence would be non-human or natural influence we have a two-way-split. I think it would be safe then to assume that dominant means decidedly more than 50 percent. And if you look at this figure from that same IPCC report, you would think it is closer to 100 percent, wouldn’t you? Without human influence there would be little to no warming, that’s those blue bands. Add human and natural together and you get the pinkish bands around the actual observations. It’s clearer in larger regions with more data: temperatures in North America, Europe, Asia, Australia show no overlap of the colored bands anymore. And it’s most clear in global averages. And there are literally 1000s of sources in the IPCC report.

Source: IPCC, AR5, WG1, Figure SPM.6 

Maybe well over 50 to 100 percent human influence is still too vague for you. Sorry, things are not as simple as we all would like them to be. Anyways: Any single number would most certainly be evidently wrong in the precision it radiates. And attack would be sure to follow. Another of the mock debates surrounding this issue.

Next: Why do you fight being told the rate of warming was a tell-tale sign of what is happening? Rates are often as important or even more so than absolute numbers in every day life, too. Consider the task of sending a message from New York to San Francisco: The distance has stayed the same since both cities are on the map. First you could send it via stage coach, then by train, plane, now e-mail. The amount of time went from weeks to seconds and that means the speed of transmission, the rate of transport went up by orders of magnitude. Not such a difficult concept, is it? And that doesn’t mean heat and cold records aren’t relevant information, too. In fact they are, and there are way more new heat records than new cold records. By 4:1, here is a source for the US.The point is, if there was no change, then there would randomly be new cold and heat records in about the same proportion.

Arctic vs Antarctic: The ice goes away in the north and grows in the south, you say, and accuse scientist of ignoring that. Well, they aren’t, there is lots of research trying to figure out what is happening in both areas. If you think scientist are hiding that ice is growing down south then maybe you are listening to somebody who wants you to think they are hiding it. You can, for instance, look here if you interested in sea ice. For land ice, this might be a good starting point – the question, it says, in under debate.
There are several big differences between the regions that make the simple comparison you demand difficult, to put it mildly. Antarctica is a continent surrounded by ocean and fierce circumpolar currents that basically give it its own independent weather. The Arctic is an ocean surrounded by continents and tightly coupled to what happens with storms, temperatures and precipitation in many countries around it including yours and mine. The northern polar region belongs to a hemisphere that contains two thirds of earth’s land mass – including the major industrial nations with their emission histories. The southern has one third of the land including Antarctica and is otherwise 81 percent water. Why would you expect the two regions to be mirror images? It’s also not as if they were shifting ice masses between them making the changes a zero-sum-game. It is a little like adding the scores of the Chicago Bears, Cubs, Bulls, Black Hawks and Red Stars and comparing them to a sum of clubs from Los Angeles to see which is the better sports town.

And just to finish up with details, your point number 11.

  • Why aren’t insurance companies paying attention to sea level rise? They are. The US flood insurance program is recognized to be in dire need of reform because of rising seas (here, here and here, the last being a report by the National Academy of Sciences). And internationally take the example of Munich Re. It says in its annual report (page 74) that “Climate change represents one of the greatest long-term risks of change for the insurance industry”. It quotes the cost of adapting to sea level rise as 1 trillion dollars for the US alone. And university analysts have given it thumbs up on its response.
  • Why do your beaches look the same? Well, Wikipedia has you living in California, the Eastern Bay area to be exact, and I assume you might be going to Santa Cruz or thereabouts. So let’s look at a map. Here is Santa Cruz with the inundation 2010, 2060 and 2100 (Source). The water has been progressing slowly (and presumably local authorities have taken care of their beaches) but changes will accelerate.
                              Source: Monterey Bay Sea Level Assessment by Noaa

    The numbers in one projection are: seven inches rise last century, six more until 2030, another six until 2050, and two more feet on top by 2100. So you are in the middle of the two-inches-per-decade phase between 2000 und 2030. That’s not easy to notice by naked eye especially when there is maintenance going on. The water will rise, your state authorities say.
  • Why are half the top hits in web searches debunking the rise? Are you honestly asking that? It’s not about the quantity of hits but about the quality of sources. Bloggers have made it their business to attack the science and since they get shared and linked across a parallel universe the Google algorithms think the sites are trustworthy. They get ranked high like science sources who often don’t spend as much time on search engine optimization. For fun try “aliens landing earth” or “Barack Obama muslim” to see the quota of reliable information.

Now for the grand finale, your major and indeed first point: models. Maybe you have been impatiently skipping down here (or maybe you have tuned out) because the IPCC-graph I showed earlier depends on models. How else would you be able to artificially switch off human contributions? That’s nothing we can do in real life.

But why do we need models, in plural, at all? Well, that’s a tenet of science. You make multiple measurements because each one could be flawed, and then you look at what the tendency, the average, the median is, or whatever statistical analysis of them tells you. It’s easy to make fun of that, I know. In everyday life one measurement usually suffices. Has your kid gained another inch, have you lost weight, are the panels of your strip all the right size, is there enough flour in the cookie dough, how many people are at the party, is there enough pressure in your tires, how many e-mails do you get in a single day? Nobody does multiple measurements and statistical analysis for those. Well, for the e-mails you might to eliminate the effect that there could be systematically higher numbers on single days, maybe Mondays and Fridays – just guessing.

In science the questions are usually a whole lot harder, so this multiple measurement habit has proved to be a good idea. As has trusting science as a whole for society, by the way. A consequence of doing this, if you do it right, is that you get two numbers. The result you are looking for and a measure of confidence that that is a figure you can depend on. Scientists being a little nerdy often call the confidence measure “uncertainty”. And that is what it is, too. It is a measure of how uncertain we need to be – or certain we can be. In everyday language that word “uncertainty” comes across badly, just like scientists don’t know their stuff. In fact it is not a weakness but a strength of the scientific method. It has established ways of quality control that are certainly lacking from many other parts of communication – like getting directions in a strange town, remembering the weather two years ago, indicating the size of fish you caught.

When there are no measurement values to be had, because you are talking about a future that hasn’t arrived yet, you need to construct models. They simplify reality in a way that makes it computable, usually leaving out big chunks of the complicated stuff. As the saying goes, they are all wrong, but some are useful. For them also it is a good idea to have several, ideally constructed from scratch in independent, competitive research groups. If they point in different directions, all but one must be getting it wrong. If, however, they point in the same direction that can boost confidence they are getting something right.

Of course they could in principle still all be wrong. Then they all would make the same mistakes and that points to the underlying science being wrong. It’s equations about how pressure and humidity and wind and rain work together and how CO2 and other greenhouse gases influence the radiation that enters and leaves the atmosphere. Complicated stuff but pretty well tested, so the criticism against models is usually not leveled there.

This graph comes from the IPCC. It shows there’s some work to be done but not total chaos. It is a comparison of a whole lot of climate models hindcasting global temperatures over roughly 150 years and through several large volcano eruptions. Black and bold are the observations, red and bold is the average of the models, the thin lines are individual ones, the yellowish shading marks the reference period against which all temperature differences are measured.
Source: AR5, WG1, Figure 9.8, 2013

To prove that the equations and the mechanisms in the models are working together well researchers do this thing called hindcasting that irritates you so. The models start their work at some point in the distant past, fed with the initial conditions from that point in time and then run unguided through the years up to the present. The results can be compared to what actually happened and give the model makers a measurement of how good they are doing. Only if they pass that test can anyone place any confidence in them getting the future right.

„It tells you nothing of their ability to predict the future“, you say. I wonder why you would think you are in the position to judge that. Yes, hindcasting indeed tells us something about the ability to project the future, because the models prove they get the underlying science right. They calculated a future from 1850 onwards based on first principles. It’s just that for us, that future is the past.

I think it is seriously wrong to equate climate models to the financial market. You are missing something rather important. In climate science people actually know what is happening and what causes what. Obviously the minute details of dealings at the Stock Exchange are NOT known even remotely as well. If you insist on that kind of simile: The only thing that would be comparable is if you have a set of publicly available rules and based on that not one financial genius but a whole bunch of them put their predictions of the future into sealed envelopes guarded by a trusted institution only to be opened when the end year envisioned has arrived and all the data are in. And you would only count it as a success if everyone of those guys got it reasonably right.

Anyways, hindcasting of course is not the primary product of the models. It is a necessary quality check, nothing more, nothing less, and should no more be advertised than race track results for a new car model that will never go 150 mph in traffic. The results should be there for the asking, sure. But not center stage. If you see hindcasting as a major part of science communication around climate models you are looking at the communication in a different way from me. It’s safe to assume that neither of us has the right way to look so we both should be careful about what we say about them. I’ll certainly look out for exaggerated hindcasting language in the future. Maybe you can look beyond that.

Remember though I said that models were “ideally constructed from scratch in independent, competitive research groups” – well, not all of them are. There are connections between some research groups but not others. So some researchers are wondering if all the models should be treated equally, they question the model democracy, as they put it. This is brand new stuff. The suggestion is to weight the models and then to do weighted averages. In real life you would be using that technique maybe to locate a sports arena that several clubs will be using – and you want to giving the club with a 100 actives more say than the clubs with 25, 33 or 50 players. So you weight their respective answers with the number of members. In the case of the models the categories that could be used for weighting are independence – the unique efforts get more say – and skill in hindcasting. So there still is not what you wanted, the single best model, but more of a unified voice of them.

Finally to put the whole business into a framing you might understand (and I find weird examples work best to get points across): If you were to hold the secret theory that creating Dilbert was inevitable given your life’s twists and turns – how would you test that? You could recruit a number of young, very young kids and subject about half of them to the same experiences you had to see if they came up with a similar syndicated cartoon series. You would have control groups that get different experiences to test correlates: Could a woman become Scott Adams? Would there be Dilbert if there hadn’t been Little Nemo, Peanuts or Doonesbury before?

And since this in reality would be impossible or inhumane to subject people to you would think of models to give you an answer. Models, in plural, because if you only relied on one you could so easily get it wrong and never even know about it.

If you are seriously interested, it is a good idea to do this in plural. Scientists are seriously interested. And as a citizen following science news you would be better off not pushing for answers that leave out the best science has to offer. And that doesn’t just apply to models, that goes for most of your demands.

Aerosole: Problem gelöst?


Das Sphinx-Observatorium auf dem Jungfraujoch ragt so eben noch aus den Wolken. Foto: Paul Scherrer Institut/ Julie Cozic


Update: Diesen Beitrag habe ich am 29. Juni 2016 um eine Stellungnahme von Wissenschaftler aus Leipzig ergänzt

Hamburg, 26. Mai 2016

Das Jungfraujoch in den Berner Alpen beherbergt nicht nur den höchsten Bahnhof Europas, sondern auch das „Sphinx“ genannte Observatorium in 3580 Metern über dem Meeresspiegel. Wenn es sich in Wolken hüllt, wie auf dem Foto, sind vielleicht die Touristen enttäuscht, aber Forscher wie Urs Baltensperger vom Paul-Scherer-Institut in Villigen im Kanton Aargau sind in ihrem Element. Baltensperger ist Atmosphären-Chemiker und Mitglied mehrerer internationaler Forschungsgruppen, die auf dem Jungfraujoch und am Forschungszentrum Cern in Genf die Entstehung von Wolken untersuchen. An den jüngsten Daten der Teams entzündet sich nun eine interessante forschungspolitische Diskussion (wer gleich dorthin springen möchte, findet sie auf der zweiten Seite; hier folgt zunächst eine Einbettung.)

Damit sich der Wasserdampf in der Luft zu kleinen Tröpfchen verflüssigen kann, die dann wie weiße Schleier oder Wattebausche über den Himmel driften oder später als Regentropfen zu Boden fallen, braucht er Kondensationskeime. Das sind kleine Partikel, die in der Luft schweben, 50 bis 100 Nanometer (Millionstel Millimeter) groß. Etwa die Hälfte von ihnen bestehen aus Staub, Sand, Russ oder Meersalz; seit kurzem weiß man auch, dass Pflanzenpollen oder Pilzsporen solche primären Kondensationskeime bilden können. Die andere Hälfte heißt sekundär, weil sie sich in der Atmosphäre neu bilden. Dazu müssen sich allerdings viele Moleküle wie Ammoniak oder ätherische Duftstoffe sowie deren oxidierte Folgeprodukte zu Clustern zusammenfinden. Sie sind zunächst, wenn sie nur aus zwei Partnern bestehen, oft instabil und brauchen einen guten Klebstoff, um noch zusammen zu sein, wenn die Moleküle 3, 4, 5 und so weiter angedriftet kommen.

Ein wichtiger Klebstoff ist Schwefelsäure (H2SO4). Sie bildet sich in der Atmosphäre aus Schwefeldioxid, das Vulkanausbrüche sowie allerhand industrielle Prozesse freisetzen. Die Menge dieses Luftschadstoffs hat derart zugenommen, dass sich Forscher gar nicht erklären konnten, wie sekundäre Kondensationskeime ohne Schwefelsäure überhaupt entstehen konnten. „Bislang dachten wir immer, wir bräuchten einen Zwei-Komponenten-Kleber zum Beispiel aus organischen Molekülen und Schwefelsäure“, sagt Joachim Curtius von der Universität Frankfurt/Main in einem Artikel von mir in der Süddeutschen Zeitung. „Jetzt zeigt sich: Die erste Komponente reicht, wenn kosmische Strahlung dazu kommt.“* Curtius, Baltensperger und viele andere Forscher haben in dieser Woche dazu gleich drei Studien in hochrangigen Journalen veröffentlicht. In Nature steht, wie sich die Molekül-Cluster im Laborexperiment ohne Schwefelsäure bilden und zu geeigneten Kondensationskeimen heranwachsen. Und in Science berichten die Wissenschaftler, dass ähnliche Prozesse auch in der freien Atmosphäre über dem Jungfraujoch zu beobachten sind. Die Redaktion in Washington hat dafür sogar ihre Sperrfrist um einen Tag verkürzt, damit das Paper zum gleichen Zeitpunkt erscheint wie die beiden in London.

Letztlich bedeutet das: Die industriellen Aerosole sind weniger bedeutend als die Wissenschaft lange befürchtet hatte. Diese Angst stammt aus einer früheren Zeit, als die Erwärmung der Atmosphäre noch nicht so deutlich zu messen war. Die Menge an Kohlendioxid war zwar gestiegen, aber es schwebte auch viel Schwefelsäure in der Luft. Forscher nahmen also an, dass eine deutliche Aufheizung durch CO2 durch eine ebenso deutliche Abkühlung wegen des H2SO4 mehr oder minder kompensiert würde. Oder sie konnten es jedenfalls nicht ausschließen – und so wurde der Ausblick in die Zukunft noch weniger zuverlässig. Es bedeutete nicht nur eine Komplikation für das Design von Klimamodellen, die die Entwickung der Temperaturen sowie von Niederschlägen berechnen sollten. Sondern hier lauerte auch die Gefahr, dass die erwünschte Reinigung der Luft von Industrieabgasen mit ihren Schwefelausdünstungen den fühlbaren Klimawandel plötzlich beschleunigen könnte. Diese Sorge ist gebannt, wenn Schwefelsäure weniger wichtig für die Wolkenbildung ist als lange angenommen.

Weiter auf Seite 2




* In diesem Beitrag soll es nicht um das eben gefallene Reizwort „kosmische Strahlung“ gehen: Wer sich dafür interessiert, kann das in meinem SZ-Artikel und/oder in dieser Fußnote nachlesen. Kosmische Strahlung ist vor allem in der Diskussion mit oft verbohrten Kritikern der etablierten Klimaforschung zum Streitpunkt geworden, ich nenne sie mal die Kalte-Sonne-Fraktion. Deren Argument geht so: Das Magnetfeld der Sonne lässt manchmal mehr und manchmal weniger kosmischen Strahlen durch. Da diese wiederum einen Einfluss auf die Wolkenbildung besitzen, könnten sie den Wärmehaushalt der Erde beeinflussen – weniger kosmische Strahlung, weniger Wolken, mehr Sonnenlicht erreicht die Oberfläche, höhere Temperaturen. So ungefähr. Manche Kritiker destillieren aus dieser Möglichkeit die Behauptung, kosmische Strahlen und nicht die Treibhausgase seien die eigentliche Ursache der globalen Erwärmung – sämtliche politischen Initiativen zum Klimaschutz also sinnlos.

Diese These ist aus vielen Blickwinkeln beleuchtet worden und nirgends fand sich ein Beleg. Auch das Labor-Experiment CLOUD von Curtius, Baltensperger und anderen hat in etlichen Versuchsreihen keine geliefert. So ist es auch diesmal. Zwar können kosmische Strahlen die Entstehung der ersten kleinen Cluster mit einer Größe von ein bis zwei Nanometern deutlich verbessern, aber auf das Wachstum zum Kondensationskeim von 50 bis 100 Nanometern haben sie nach Aussage der Forscher „keinen Einfluss“. Zudem gibt es seit Beginn der Industrialisierung so viel Schwefelsäure in der Atmosphäre, dass die Dienste der kosmischen Partikel kaum noch gebraucht werden. Sie können vielleicht erklären, warum die Erde in früheren Epochen stärker auf die Veränderungen im Strahlungseinfall reagiert hat, aber sicherlich nicht, warum sie sich in der jüngeren Vergangenheit erwärmt hat.


Aerosole: Problem gelöst? Seite 2


Wolken über Berlin – bei Sonnenuntergang von unten beleuchtet. Schwefelsäure in der Atmosphäre hat bei der Bildung sicherlich mitgeholfen. Foto: C. Schrader 


Hamburg, 26. Mai 2016

Fortsetzung von Seite 1

Aus diesem wissenschaftlichen Erfolg entspinnt sich eine interessante forschungspolitische Diskussion, die ich in meinem SZ-Artikel nur anreiße, und hier vertiefen will. Bjorn Stevens, Direktor am Max-Planck-Institut für Meteorologie in Hamburg, verbindet sein Lob für die Ergebnisse aus der Schweiz mit einer Forderung, die den Autoren der Studien kaum gefallen dürfte. Da sich die Aerosole als wenig bedeutsam gezeigt haben, solle man sie gleich ganz aus den Simulationen nehmen und die Erforschung ihrer Effekte auf das Klima einstellen. „Insofern bedeuten die Messungen einen großen Sieg: Wir können das zur Seite legen und uns wichtigeren Dingen widmen.“

Zur genaueren Erklärung hat Stevens nach dem Interview noch eine E-Mail geschickt.

My point is that these studies support the assertion that we probably don’t need to better understand the aerosols to advance on what are some of the first rank problems related to understanding climate change.  As I mentioned yesterday, air pollution and human health are big issues, and science should work on problems that interest scientists (to some degree) so it would be unfair and incorrect to say that we should stop aerosol research.
I’m just trying to say that it is less central to understanding climate than we perhaps believed 10 or even a few years ago… or for that matter before this study.  And knowing what might be important (for a particular problem) is often a great step forward when researching something as complex as Earth’s climate.

Seine Position ist nicht ganz neu: Stevens hat das 2013 bereits in einen Kommentar in Nature geschrieben. Die damals besprochene Studie von Ken Carslaw (der auch zu dem Autoren der beiden neuen Nature-Studien gehört) und anderen in Leeds habe gezeigt, so Stevens, dass „wenn es einen Aerosol-Joker gab, dann wurde er bereits vor einem Jahrhundert gespielt und ist irrelevant für das Verständnis momentaner und künftiger Veränderungen des globalen Klimas geworden“.

Diese Logik leuchtete damals nicht unbedingt jedem ein, forderten doch die Autoren der Studie, man müsse mehr über die „unverdorbene vor-industrielle Umwelt“ erfahren. Die natürlichen Aerosole trügen 45 Prozent zur heutigen Unsicherheit über die Wirkung der Schwebteilchen bei, die industriellen nur 34 Prozent. So groß erschien der Unterschied nicht, als dass man den kleineren Part einfach ignorieren könnte.

Doch inzwischen haben die Forscher um Baltensperger und Curtius ja Daten über die Verhältnisse vor der Industrialisierung geliefert. Sie lassen den Einfluss der industriellen Aerosole geringer als befürchtet erscheinen, also kann Stevens seine Forderung mit Verve wiederholen.

Es ist wenig Wunder, dass die Autoren der neuen Studien die Schlussfolgerung des MPI-Direktors nicht teilen. Joachim Curtius hat mir geschrieben:

Durch unsere Untersuchungen verbessert sich genau unser Verständnis der früheren, nicht durch Menschen belasteten Atmosphäre, und wir erreichen damit eine wesentliche Verringerung der Unsicherheit und unser bisheriges „poor knowledge“ wird verbessert. Das ist genau das was auch nach Herrn Stevens’ Meinung bisher gefehlt hat. Damit können wir die Aerosoleffekte jetzt genauer beziffern. Die Verringerung dieser Unsicherheit (die gleichzeitig die Unsicherheit beim Gesamtstrahlungsantrieb inkl. Treibhausgase dominiert) ist eine der ganz großen Herausforderungen und genau da tragen wir zur Verringerung der Unsicherheit bei und es ist in  meinen Augen höchst sinnvoll diesen Fragen weiter nachzugehen.  Und, ja, die Effekte werden wohl kleiner, aber sie werden nicht null.

Und Urs Baltensperger hat sich so geäußert:

Es ist zwar richtig, dass bei der heutigen Situation mit höheren Aerosolkonzentrationen eine Änderung von sagen wir 10% eine kleinere Auswirkung hat als in der vorindustriellen Zeit. (…) Dies bedeutet aber nicht, dass die Auswirkungen völlig egal wären; wir sprechen ja über viel größere Änderungen als 10%. (…) Der Strahlungsantrieb der Aerosole durch Wechselwirkung mit den Wolken  ist damit nach wie vor relevant, aber schlecht quantifiziert, und benötigt deshalb weitere Forschung, unter anderem, um die Effekte der vorindustriellen Zeit und damit auch die Differenz besser quantifizieren zu können. (…) Daneben gibt es aber nach wie vor den direkten Effekt der Aerosolpartikel mit der Strahlung (in unseren Papern gar nicht angesprochen), und da gibt es diesen Sättigungseffekt nicht. Ich kann aus diesen Gründen die Schlussfolgerungen absolut nicht nachvollziehen. Sie werden auch durch ständige Wiederholungen nicht richtiger.

Diese Diskussion hat unter anderem Bedeutung für das Design künftiger Klimamodelle: Brauchen Sie die zusätzliche Komplexität, die das Nachstellen der Aerosol-Chemie bedeutet oder nicht? Piers Foster von der Universität Leeds, der wie Stevens ein Lead Author des entsprechenden Kapitels im fünften Bericht des IPCC war, nimmt eine Art Mittelposition ein und wirbt für Pragmatismus – vor allem weil die Aerosole viel Rechenzeit verbrauchen.

I think the wider climate community needs to move to suites of related climate models with different degrees of complexities, so you can choose your climate model depending on the question you want to answer. The new UK Earth system model which is just going online is a case in point. Colleagues at Leeds, led by Ken Carslaw (author of the Nature papers) led the development of the aerosol scheme within this model. It contains the complexities talked about in the Nature papers, so it is a good one.
However, they are very computational expensive models to run and around 75% of the computer time within the Earth system model is taken up by the interactive chemistry and aerosol scheme. This severely limits the experiments we can do with it. So I think we also need the stripped down models with simplistic aerosol schemes – and these simple models can be used to explore many other very important problems in climate change not related to aerosols.

In der Tat empfiehlt aber auch er seinen Kollegen, bei ihren Forschungsanträgen in Zukunft nicht mehr zu betonen, die Aerosole machten die größte Unsicherheit in der Klimaberechnung aus. Das stimme einfach nicht mehr. „Die Aerosol-Community hat großartige Arbeit geleistet und es gibt noch viele Fragen, denen sie sich widmen kann: Luftqualität und der Beitrag der Aerosole zur Klimavariabilität sind zwei interessante.“

Ergänzung am 29. Juni 2016

Mehrere Wissenschaftler des Leibniz-Instituts für Troposphärenforschung in Leipzig und von der dortigen Universität haben mich gebeten, hier auch ihre Stellungnahme zu der These von  Bjorn Stevens zu dokumentieren.

Dieser Aussage möchten wir ausdrücklich widersprechen. Generell ist es sehr problematisch, aus den Untersuchungsergebnissen zu einigen organischen Partikelbestandteilen direkt auf deren Auswirkung auf die Wolkenbildung auf klimarelevanten Skalen zu schließen. Klimamodelle können Aerosol-Wolkenprozesse noch nicht ausreichend realistisch abbilden. Daher kann die Bedeutung der neuen Ergebnisse für die Klimaentwicklung nicht ohne weiteres abgeleitet werden. Dass die Einflüsse atmosphärischer Aerosolpartikel auf das Klima im Allgemeinen nicht ignoriert werden sollten, wird auch in einer gerade erschienenen, thematisch relevanten Veröffentlichung in der renommierten amerikanischen Fachzeitschrift ‚Proceedings of the National Academy of Sciences’ verdeutlicht (Seinfeld et al 2016). Hier stellen die Autoren heraus, dass selbst bei einer Verringerung der Empfindlichkeit von Wolkeneigenschaften in Bezug auf Aerosolpartikeln, es in Zukunft, z.B. auf Grund der sinkenden Partikelkonzentrationen, nicht weniger wichtig wird, die von ihnen verursachten Modifikation des Treibhauseffekts und damit ihre Wirkung auf das Erdsystem besser zu verstehen.

Die Schlussfolgerung, dass die Rolle von Aerosolpartikeln im Klimasystem verstanden, ihre Auswirkungen hinreichend geklärt und quantifiziert wären und somit zu diesem Themenkomplex nicht weiter geforscht werden solle, ist also in keiner Weise nachvollziehbar.

gez. Ina Tegen, Hartmut Herrmann, Andreas Macke, Frank Stratmann, Ulla Wandinger, Alfred Wiedensohler (Leibniz-Institut für Troposphärenforschung); Johannes Quaas, Manfred Wendisch (Leipziger Institut für Meteorologie, Universität Leipzig)

Zurück zur Startseite

Der Klimawandel ist da, da und da

Darfur_cAlbert González Farran-UNDie Situation der Menschen in Darfur ist schon wegen des Bürgerkrieges dort extrem schwierig. Im Jahr 2014 erlebte Ostafrika auch noch besonders hohe Temperaturen und eine Dürre. Foto: UN Photo, Albert González Farran, flickr, creative commons license

6. November 2015

Bis vor kurzem haben Klimaforscher diese Frage gehasst: „Ist das schon der Klimawandel?“ Wenn Wälder brannten, Städte glühten, Felder vertrockneten oder anschwellende Flüsse Dörfer versenkten, dann rief bestimmt jemand an und wollte das wissen. Und meist war dann die Antwort: Es ist unmöglich, für ein einzelnes Extremereignis genau anzugeben, was es ausgelöst hat – oder dass es ohne Klimawandel niemals hätte entstehen können.

Doch inzwischen stellen sich die Wissenschaftler die Frage selbst. Dieser Zweig ihrer Disziplin heißt inzwischen „Attribution“, also Zuordnung. „So wie sich die Wissenschaft der Zuordnung von Ereignissen weiter entwickelt, wird auch unsere Fähigkeit wachsen, den Einfluss von Klimawandel und natürlicher Variation auf einzelne Wetterextreme auseinander zu halten“, sagt Thomas Karl, der bei der US-Behörde für Ozeane und Atmosphäre (Noaa) für Umweltinformation zuständig ist.

Seine Abteilung hat am Donnerstag zum vierten Mal einen Sonderband heraus gegeben, in dem Extremereignisse – diesmal des Jahres 2014 – darauf untersucht werden, ob der menschliche Einfluss auf das Klima etwas damit zu tun hatte (Bulletin of the American Meteorological Society, Bd. 96, Dezember 2015, online). „In all den vier Jahren hat der Bericht gezeigt, dass zum Beispiel extreme Hitze etwas mit den zusätzlichen Treibhausgasen in der Atmosphäre zu tun hat“, sagt Karl. „Wenn es aber um Niederschlägen geht, ist das noch nicht so überzeugend.“

28 Extremereignisse des Jahres 2014 untersuchen die Wissenschaftler in insgesamt 32 Studien. Die Ereignisse reichen von Hurrikanen in Hawaii und Waldbränden in Kalifornien über Dürre in Afrika und Lawinen in Nepal bis zu Starkregen in Neuseeland und dem Meereis der Antarktis. In den 32 Einzelstudien sagen die Forscher neunmal nein, fünfmal vielleicht und 18-mal ja, da gibt es einen Effekt des Klimawandels. Sie beeilen sich indes hinzuzufügen, sie sprächen von „probabilistischem, nicht deterministischem“ Einfluss. Der Klimawandel macht Extremereignisse also erkennbar wahrscheinlicher, aber er ist nicht allein für sie verantwortlich. Und die Wissenschaftler räumen auch ein, dass ihre Auswahl der Fallbeispiele nicht repräsentativ ist. So führt die meteorologische Weltorganisation in ihrem Bericht über 2014 noch Überschwemmungen in Afrika und Südamerika sowie eine Dürre in Zentralamerika auf, die in dem Noaa-Sonderband fehlen.

Geradezu symbolisch ist ein Ereignis, das sich genau in Raum und Zeit fixieren lässt. Es passierte im australischen Brisbane, der Hauptstadt des Bundesstaates Queensland. Dort trafen sich Mitte November 2014 die G20-Staaten zum Gipfel, Politiker wie US-Präsident Barack Obama und Bundeskanzlerin Angela Merkel waren angereist. Die australischen Gastgeber um Premierminister Tony Abbott versuchten zwar, das ihnen missliebige Thema Klimawandel klein zu halten, doch die globale Erwärmung drängte in Gestalt einer Hitzewelle mit Macht auf die Tagesordnung. Am zweiten Gipfeltag erreichten die Temperaturen 39 Grad Celsius; 27 Grad wären an einem solchen Frühlingstag zu erwarten gewesen. Verantwortlich war, wie australische Wissenschaftler jetzt belegen, auch der Klimawandel.


Der Einfluss des Klimawandels auf die Hitzewelle beim G20-Gipfel in Brisbane 2014: Schwarz sind historische Beobachtungen, blau Modellrechnungen ohne und rot solche mit Klimawandel. Die tatsächlich gemessenen Temperaturen liegen weit über der normalen Verteilung. Quelle: Andrew King et al, doi: 10.1175/BAMS-D-15-00098.1, im BAMS-Sonderband, Figure 28.1. 

Bei Hitzewellen ist die Beweislage in der Regel besonders klar. In den nun vier Noaa-Berichten, stellt ein Team um Stephanie Herring von der Behörde fest, hätte erst eine von 22 Studien bei Hitzewellen keinen Einfluss des Klimawandels gefunden. Auch diesmal zeigen alle Analysen einen solchen Effekt. Für Brisbane im November 2014 hat die globale Erwärmung die brutale Hitze um 44 Prozent wahrscheinlicher gemacht, rechnet ein Team australischen Klimaforscher vor. Um solche Aussagen zu gewinnen, nutzen die Forscher Klimamodelle, in denen sie die Menge an Treibhausgasen in der Luft frei wählen und den Klimawandel sozusagen abschalten können. Sie vergleichen also die reale Welt mit einer fiktiven. Dabei kommen oft noch deutlich größere Aufschläge auf die Wahrscheinlichkeit als beim Beispiel Brisbane heraus, dass eine Hitzewelle entsteht. Sie werden meist nicht mehr als Prozentzahl ausgedrückt, sondern als Faktor. In anderen Teilstudien schreiben die jeweiligen Autoren, die Spitzentemperaturen in Argentinien im Dezember 2013 sei durch den Klimawandel fünfmal so wahrscheinlich geworden, die Hitze in Nordchina im Sommer 2014 elfmal und die Thermometerausschläge im australischen Herbst 2014 (im Mai) sogar 23-mal so wahrscheinlich. Auch die Rekordwärme in Europa im ganzen Jahr 2014 sei durch den Klimawandel zehnmal so wahrscheinlich geworden wie ohne, besagt eine Studie.

Die Wärme hat womöglich auch in Kalifornien zu einer extremen Saison der Waldbrände geführt. Für 2014 berichtete Cal-Fire von 1000 Bränden mehr als im Fünf-Jahres-Durchschnitt. Und 2015 ging es weiter: Bis Ende Oktober hatte es fast 2000 Feuer mehr gegeben als zur gleichen Zeit ein Jahr zuvor (allerdings sind die Angaben der verbrannten Fläche in den offiziellen Statistiken etwas rätselhaft). Doch obwohl der Zusammenhang klar erscheint, tun sich die Forscher schwer, bei einzelnen Feuern oder sogar einer ganzen Saison den Einfluss des Klimawandels fest zu machen. Sie erwarten jedoch, dass die globale Erwärmung in Zukunft zur weiter steigenden Zahlen der Brände und der betroffenen Waldflächen beitragen wird. „Wenn wir die Tendenz betrachten, zeigen die Daten eindeutig einen Anstieg“, sagte der Leitautor dieser Studie, Jin-Ho Yoon vom Pacific Northwest Laboratory bei Climate Central.

YosemiteFire_Jul2014_cStuart Palley, EPA

Feuer im Yosemite-Nationalpark im Juli 2014. Foto: Stuart Palley/EPA

Interessant, wenn auch ähnlich unentschieden, ist die Analyse des Meereises um die Antarktis. Dessen Fläche hatte im Jahr 2014 zum ersten Mal seit langer Zeit wieder die Schwelle von 20 Millionen Quadratkilometern überschritten – es war der dritte Rekord in Folge. Im Südpolarmeer zeigt sich also der umgekehrte Trend wie im Norden. Verantwortlich war 2014 ein Feld ungewöhnlicher Winde, die schwimmende Eisschollen vom Kontinent Antarktis weg nach außen trieben, weil sie besonders kalte Luft relativ weit nach Norden brachten. Besonders zu bemerken war das in den Sektoren die Antarktis, die südlich von Neuseeland und vom mittleren Indischen Ozean liegen. Die Autoren haben sich dann, unter anderem mithilfe eines Supercomputers in Barcelona bemüht, einen menschlichen Einfluss auf diese Windfelder zu erkennen. Richtig gelungen ist es ihnen aber nicht.

Auch bei allem, was mit Regen oder fehlendem Regen zu tun hat, ist das Bild durchwachsen, wie schon von Thomas Karl angekündigt. Dürre zum Beispiel kann schließlich durch mangelnde Niederschläge, größere Hitze oder eine Kombination aus beidem ausgelöst werden. Zwei Studien zur Trockenheit in Ostafrika 2014 kommen darum zu widersprüchlichen Ergebnissen: die eine sieht den Effekt des Klimawandel, die andere eher nicht. Den Wassermangel in Brasilien erklärt ein weiteres Team durch steigende Bedürfnisse einer wachsenden Bevölkerung. Auch eine menschliche Ursache, aber eben nicht der Klimawandel. Übermäßiger Regen wiederum hatte 2014 Großbritannien, Südfrankreich, Indonesien und Neuseeland getroffen. Nur für das letzte Beispiel glauben die Forscher den Einfluss des Klimawandels belegen zu können, bei den europäischen Ländern liefert die Analyse nur ein „Vielleicht“, und die Regenfälle in der indonesischen Hauptstadt Jakarta seien nicht einmal ungewöhnlich gewesen.

Dagegen habe der Klimawandel einen extremen Wintersturm über dem Himalaja in Nepal begünstigt, sagt eine Studie. Das bisher seltene Zusammentreffen eines tropischen Zyklons im Golf von Bengalen mit einer kurzlebigen Wetterdepression, die dem Sturm den Weg zum Gebirge bahnte, werde in Zukunft häufiger vorkommen, so das Autorenteam. Im Oktober 2014 verloren dadurch laut der Studie allein 43 Menschen in Lawinen ihr Leben.


Der Weg des Hurrikans Gonzalo im Oktober 2014 nach Europa. Die tatsächliche Zugbahn ist violett, langfristige Vorausberechnungen seiner Route sind rot, kurzfristige gelb. Quelle: Frauke Feser et al, doi: 10.1175/BAMS-D-15-00122.1, im BAMS-Sonderband, Figure 11.1

Im gleichen Monat wurde Europa von einem starken Sturm getroffen, der sich aus dem Hurrikan Gonzalo in der Karibik entwickelt hatte. Dieser war um den 12. des Monates entstanden und dann binnen elf Tagen in einem weiten Bogen bis nach Griechenland gereist. Das, stellt eine Forschergruppe mit starker deutscher Beteiligung fest, war aber nicht so ungewöhnlich, wie es zuerst aussah. Winterstürme in Nordamerika und Hurrikane auf Hawaii seien aber sehr wohl durch den Klimawandel wahrscheinlicher geworden.

Christopher Schrader, alle Rechte vorbehalten

Hinweis: Dieser Beitrag beruht auf einem Artikel, den ich für die Süddeutsche Zeitung geschrieben habe.


Wo das Meereis bleibt

Polar ice viewed from aboard the Norwegian Coast Guard vessel, "KV Svalbard", during Secretary-General Ban Ki-moon’s visit to the Polar ice rim to witness firsthand the impact of climate change on icebergs and glaciers. The visit is part of the UN Chief's campaign urging Member States to negotiate a fair, balanced and effective agreement at the UN Climate Change Conference in Copenhagen in December. 1/Sep/2009. Polar Ice Rim, Norway. UN Photo/Mark Garten.

Meereis vor Spitzbergen im September 2009, aufgenommen vom norwegischen Küstenwachboot KV Svalbard bei einem Besuch des UN-Generalsekretärs Ban Ki-moon,
Foto: UN Photo, Mark Garten,, flickr, creative commons licence

3. November 2015

Auf Spitzbergen hat der Klimawandel kurz der Jahrtausendwende richtig angefangen. Der Osten der Inselgruppe war bis dahin fest im Griff des Meereises. Wenn es dort 15 eisfreie Tage im Jahr gab, war das schon eine Ausnahme; mehr als 50 kamen praktisch nicht vor. Das begann sich in den späten 1990er-Jahren zu ändern: Der Trend der Jahr für Jahr erfassten eisfreien Tage knickte plötzlich nach oben. Den Maximalwert der historischen natürlichen Schwankungen, also jene 50 Tage, dürfte Spitzbergen etwa 2020 verlassen, und Mitte des Jahrhunderts ist an seiner Ostküste mit 100 eisfreien Tagen im Jahr zu rechnen, haben amerikanische Polarforscher berechnet. Es gehört damit zu den vielen Orten und Regionen rund um die Arktis, die bald verlässlich offenes Wasser vor sich haben werden.

„2050 werden die gesamte arktische Küste und der Großteil des Polarmeers 60 zusätzliche Tage von offenem Wasser erleben, und an vielen Orten werden es sogar 100 Tage sein“, fasst das Team um Katharine Barnhart von der University of Colorado in Boulder ihre Studie zusammen (Nature Climate Change, online, doi: 10.1038/nclimate2848). Die vier haben mit einem Computermodell berechnet, wie ungebremster Klimawandel die Geographie des Hohen Nordens ändern würde: Schließlich war das Eis in vielen Regionen eine feste Größe, dazu gehörten neben Ost-Spitzbergen auch die Ostküste Grönlands, Teile der kanadischen Inseln am Rande des Polarmeers und natürlich das Meer über dem Nordpol. In der ganzen Region beginnt  die Schmelzsaison früher und endet später.

Zurzeit ist diese Phase etwa Mitte September zu Ende. Dann erreicht das Meereis über die gesamte Arktis betrachtet seine geringste Ausdehnung, danach frieren wieder zehntausende Quadratkilometer zu (genauer: sie sind wieder zu mehr als 15 Prozent mit Gefrorenem bedeckt und fallen so aus der Kategorie „eisfrei“ heraus). Neben der jährlichen Durchschnittstemperatur ist die Meereis-Fläche am Ende der Schmelzsaison die zweite Größe, an der unter großer öffentlicher Anteilnahme die von natürlichen Schwankungen überlagerte Veränderung des Klimas abgelesen werden kann (siehe zum Beispiel Noaa und Doch die reine Zahl der Quadratkilometer Meereis ist nur eine sehr pauschale Größe.

Um eine Vorstellung davon zu bekommen, wann sich die Verhältnisse wo ändern, hat die Gruppe aus Boulder eine sogenannte Ensemble-Simulation ausgewertet. 30-mal wurde dafür das gleiche Klimamodell angeworfen, nachdem es mit jeweils leicht veränderten Ausgangswerten gefüttert worden war. Dieses Verfahren liefert eine Vorstellung davon, wie genau ein Ergebnis einer solchen Kalkulation bestimmt ist oder wie stark es von Zufällen abhängt . Das verleiht den Rechenwerten im besten Fall eine statistische Signifikanz. (Das Verfahren wird auch bei Wetterprognose verwendet: Wenn die Ergebnisse im Ensemble nahe beieinander liegen, und wenn auch die jeweils anderen Wetterdienste ähnliche Ergebnisse erzielen, getrauen sich Meteorologen, auch mal über längere Zeiträume als drei bis vier Tage eine Vorhersage zu machen.)

OpenWaterDaysArctic_Nov2015_Fig2Der Rückzug des ewigen Eises: Die Karte zeigt, in welchem Jahr eine Region der Arktis voraussichtlich zum letzten Mal für ein halbes Jahr von Eis bedeckt ist. Weiße Regionen hatten bisher stets offenes Wasser, das karierte Zentrum niemals. Grafik: Barnhart et al, Nature Climate Changeonline, doi: 10.1038/nclimate2848, Fig 2

Das Ergebnis ist zum Beispiel diese Karte. Sie zeigt, wann sich der Charakter einzelner Regionen der Arktis ändert, weil sie nun weniger als ein halbes Jahr von Eis eingeschlossen sind. In der kanadischen Hudson Bay (links unten) zum Beispiel ist der Prozess im Jahr 2040 abgeschlossen, entlang der grönländischen Küsten zieht sich das heute noch vorherrschende Eis ab 2025 nach Norden zurück. Mindestens 182 Tage Eis im Jahr gibt es dieser Simulation zufolge (sowie unter der Voraussetzung, dass die Staaten der Welt keinen wirksamen Klimaschutz beschließen) am Ende des Jahrhundert praktisch nur noch auf der grönländischen und ostkanadischen Seite des Polarmeeres, aber nicht mehr vor Alaska, und fast nicht mehr vor Sibirien.

Eine andere Studie hatte vor kurzem zudem gezeigt, dass der Arktis in den vergangenen Jahrzehnten sogar noch einiges erspart geblieben ist. Die Luftverschmutzung hat den Klimawandel in der Region abgemildert: 60 Prozent der Erwärmung, die Treibhausgase über das 20. Jahrhundert ausgelöst haben, wurden durch andere Emissionen abgepuffert, die in Form von Aerosolen in der Luft schweben. Die wichtigste Stoffgruppe dabei waren und sind Sulfate. Die Schwefel-Verbindungen, die auch bei Vulkanausbrüchen frei werden, kühlen das Klima ab, weil sie die Wolkenbildung verstärken. Ihnen entgegen wirken Rußpartikel, die in der Arktis niedergehen, und das Eis leicht grau färben. Es absorbiert dann eine Spur mehr Sonnenlicht und schmilzt schneller. Allerdings schützen die Sulfate das Eis stärker als Ruß es gefährdet.

Kanadische Forscher haben sich nun gefragt, wie das weitergeht. In den Zukunftszenarien, mit denen Klimaforscher gemeinhin rechnen, ist auch ein Rückgang der Luftverschmutzung eingeplant: Was aber passiert, wenn dieser Effekt trotz ansonsten leidlich effektiven Klimaschutzes (für Experten: RCP4.5) ausbleibt? Der Arktis, so ergibt die Rechnung von Marie-Ève Gagné und ihrer Kollegen vom kanadischen Umweltministerium, blieben dann die eisfreien Sommer ein weiteres gutes Jahrzehnt erspart: Statt 2045 passiert es erst 2057, dass die Meereis-Fläche im September unter die Grenze von einer Million Quadratkilometer fällt (Geophysical Research Letters, online, doi: 10.1002/2015GL065504). Das wäre deutlich weniger als zurzeit – 2014 waren es etwas mehr als fünf, im Jahr des Rekords 2012 immerhin 3,4 Millionen Quadratkilometer. Die schmutzige Luft wäre dann für das Meereis der Arktis sogar ein wenig vorteilhafter als ein insgesamt erfolgreicher Klimaschutz mit einer ehrgeizigen Senkung der Treibhausgas-Emissionen. „Die Studie bedeutet aber nicht, dass wir keine Gesetze für saubere Luft haben sollten“, sagte Nathan Gillett, Gagnés Kollegen und Ko-Autor, der Webseite Climate Central. „Viele Untersuchungen haben schließlich gezeigt, dass die Reduktion der Aerosole insgesamt große Vorteile bringt.“

Christopher Schrader, alle Recht vorbehalten