Das Zeitalter der Pilzwolken

Am 25. Juli 1946 ließen die Amerikaner auf dem Bikini-Atoll im Rahmen der „Operation Crossroads“ den Sprengsatz Baker 27 Meter unter Wasser detonieren. 93 ausgemusterte und erbeutete Schiffe und viele Versuchstiere wurden der Explosion ausgesetzt. Sie fiel so unerwartet heftig aus und verursachte solche Schäden, dass die Organisatoren den geplanten dritten Test absagten und später erst einmal wissenschaftliche Begriffe für die beobachteten Phänomene definieren mussten. Einige der radioaktiv verseuchten Schiffe wurden später im Pazifik vor San Francisco versenkt.

There is now also an English translation of this entry

Hinweis: Dieser Blogbeitrag beruht auf zwei Artikeln von mir, die bei Spektrum.de und in der Süddeutschen Zeitung erschienen sind. Ich habe sie hier zusammengefasst und ergänzt, und bringe sie vor allem, weil ich die alten Bilder so toll finde. Es lohnt sich, besonders beim Aufmacher-Bild, dem Link zu folgen. 

Das Zeitalter der Pilzwolken begann am 16. Juli 1945, morgens um halb sechs. An jenem Tag hatte sich die Elite der amerikanischen Physiker in der Wüste von New Mexico versammelt, knapp 60 Kilometer südwestlich von Socorro. Es war der erste Praxistest des Manhattan-Projekts, die erste Explosion einer Atombombe; Robert Oppenheimer hatte der Operation den Codenamen „Trinity“ gegeben. Den Sprengsatz selbst nannten die Entwickler flapsig „Gadget“, also Gerät oder Vorrichtung. Er steckte in einem mannshohen ausgebeulten Zylinder mit wildem Kabelgewirr auf der Außenseite. Sein Herzstück waren sechs Kilogramm Plutonium, und er erreichte eine Sprengkraft von etwa 21 Kilotonnen. Die Physiker hatten noch gewettet, welche Wucht der nukleare Sprengsatz erreichen würde. Die meisten unterschätzten die Explosion, nur Edward Teller war übermäßig optimistisch, so schildert es der Historiker Richard Rhodes in seinem Buch „The making of the Atomic Bomb“. Diese Zahl, um die die Experten gewettet hatten, ist nun von Radiochemikern des Los Alamos Nationallabors noch einmal mit einer ganz neuen Methode bestätigt worden.

Noch immer bietet die Geschichte der amerikanischen Atombomben Wissenschaftlern Ansatzpunkt für ihre Projekte. Sie interessieren sich für die nukleare Hinterlassenschaft der Pilzwolken-Ära: Neue Methoden erlauben Einblicke in die Funktionsweise der Sprengkörper. Die Erkenntnisse könnten bei der Überwachung künftiger Abrüstungsverträge helfen. Andere Forscher liefern frische Daten von vernachlässigten Schauplätzen der Historie wie den Südseeatollen von Enewetak, Rongelap und Bikini, wo die US-Armee fast 20 Jahre nach dem Krieg ihre Bombentests noch oberirdisch durchführte. Oder von einer Basis auf Grönland, Camp Century, von der aus die Amerikaner im Ernstfall Raketen gen Sowjet-Union starten wollten. Der Klimawandel könnte einige der Hinterlassenschaften freisetzen.

Die Trinity-Explosion ist zwar fast ein Menschenleben her, Augenzeugen dürfte es daher nur noch wenige geben. Immerhin: Neben den Physikern waren auch viele junge Soldaten anwesend, und auch Kinder der normalen Bevölkerung von New Mexico erlebten den plötzlichen Blitz mit. Mit Geigerzählern oder anderen herkömmlichen Instrumenten ist das Ereignis noch heute an damaligen Ground Zero, den die Öffentlichkeit zweimal im Jahr besuchen kann, ohne weiteres nachvollziehbar. Die Strahlung ist etwa zehnmal so hoch wie sonst in den USA. Doch Einzelheiten der Bombe buchstäblich aus dem Sand zu lesen – das ist mal ein neuer Ansatz.

Die Forscher um Susan Hanson brauchten dafür nur fünf Stückchen Glas von der Explosionsstelle, nicht einmal zehn Gramm. Die intensive Hitze des Tests hatte hier den Sand geschmolzen und dabei auch Spaltprodukte der Kettenreaktion eingeschlossen. Und obwohl in den Proben 70 Jahre lang weiter unzählige radioaktive Zerfallsprozesse abgelaufen waren, konnten die Forscher Bauart und Effektivität der Bombe daraus bestimmen. Für die Sprengkraft brauchten sie nur die historisch überlieferte Menge Plutonium und kamen so auf 22,1 Kilotonnen, das deckt sich im Rahmen der Messgenauigkeit mit bisherigen Angaben. Die Wissenschaftler richten den Blick nun nach vorn. „Ein solches Verfahren könnte die Zeitspanne erweitern, in der man Daten für Inspektionen sammelt“, schließt das Team von Hanson aus dem Erfolg. „Das würde auf absehbare Zukunft die Überprüfung von Abrüstungs-Verträgen verbessern.“ Sie haben ihre Resultate in PNAS veröffentlicht.

TrinityGadget_10540204545_430c889902_o
Norris Bradbury, im Manhattan-Projekt zuständig für die Montage der „Gadget“ genannten ersten Atombombe, und seine Kreation. Quelle: US-Regierung, flickr

Im Fall Trinity war der Kniff, in den Proben nicht nach strahlenden Resten, sondern nach stabilen Atomen zu suchen, genauer nach Molybdän-Isotopen. Neun von ihnen sind bekannt, sieben davon sind stabil, ihr Atomgewicht liegt zwischen 92 und 100. Sie haben jeweils ihren festen Anteil am natürlichen Vorkommen, der zwischen neun und 24 Prozent liegt. Diese Verteilung hatte sich in den Glasproben allerdings verschoben. Die Isotope Mo-95 und Mo-97 nämlich stehen jeweils am Ende einer Zerfallskette, in denen sich die Reste der im Feuerball der Explosion gespaltenen Plutoniumatome immer weiter umwandeln, bis sie einen stabilen Atomkern formen können. Die beiden Isotope wurden also als Folge der radioaktiven Prozesse häufiger. Bei Molybdän-96 hingegen passierte das nur im Millionstel-Bereich, denn hier endet die Zerfallskette schon vorher. Das Team um Hanson konnte also aus den Relationen Mo-95/Mo-96 und Mo-97/Mo-96 ablesen, wie die Explosion abgelaufen war. Zusammen mit dem Plutoniumgehalt der Proben ließen sich so die Anzahl der gespaltenen Atome und die Sprengkraft von „Gadget“ errechnen.

Nach dem ersten Test in New Mexico hatten die Amerikaner im August 1945 zwei Bomben auf die japanischen Städte Hiroshima und Nagasaki geworfen. Danach folgten noch Dutzende weiterer Tests – zur Sicherheit nicht auf eigenem Staatsgebiet, sondern auf den Südseeatollen. Obwohl Jahrzehnte vergangen sind, bleiben viele der Inseln dort verstrahlt: Die Zeit wird schließlich nicht unbedingt nach den Maßstäben der Menschen gemessen, sondern in der Halbwertszeit des gefährlichsten verbliebenen Spaltprodukts der damaligen Detonationen: Cäsium-137, dessen Menge sich nur alle 30 Jahre halbiert. Wie viel Strahlung wirklich noch da ist, wussten offizielle Stellen aber offenbar nicht genau – bis ein Team um Autumn Bordner von der Columbia-University mal nachgeschaut hat. Die Forscher charteten sich im Sommer 2015 ein Boot und steuerten innerhalb von zwei Wochen im August 2015 sechs der Inselgruppen an. Ihre Daten haben sie ebenfalls bei PNAS veröffentlicht.

Es zeigte sich, dass zumindest die Insel Enewetak, wo bereits wieder fast 1000 Menschen leben, einigermaßen sicher ist. Die Forscher fanden Dosisraten von 0,04 bis 0,17 Millisievert pro Jahr (msv/a), die von außen, also aus Boden, Wasser und Pflanzen auf Bewohner der Insel einwirkten. Als Mittelwert nennen sie 0,08 msv/a; nur auf einem Fleck an der Südspitze zeigten die Mess-Instrumente deutlich mehr, nämlich 0,4 msv/a. Als Grenzwert der zusätzlichen Strahlenbelastung in Folge der Atomtests haben die USA und die Marshall-Inseln gemeinsam eine Dosis von einem Millisievert pro Jahr festgelegt; nach dieser Angabe sollte beurteilt werden, ob frühere Bewohner der Inseln oder ihre Nachkommen sie wieder bewohnen können. Das gleiche Limit gilt in Deutschland.

Allerdings sollten bei Messungen wie denen des Columbia-Teams nicht mehr als zehn oder 15 Prozent des Grenzwertes ausgeschöpft werden. Die äußere Umgebung ist ja nur ein Strahlungsfaktor, wenn die Menschen auch womöglich belastete, lokale Nahrungsmittel essen und Radioaktivität im Wasser zu sich nehmen. Diese Bedingung ist zumindest auf Enewetak weitestgehend erfüllt, wo die Umwelt im Mittel acht Prozent des Limits ausmacht. Die Strahlungswerte sind damit vergleichbar mit denen auf dem kaum belasteten Majuro-Atoll, wo in der Hauptstadt des Landes heute viele der Staatsbürger beengt leben.

Die Entwarnung gilt aber nicht für das berüchtigte Rongelap, das immer noch unter der Nuklear-Geschichte leidet. Die Insel war beim Atomtest Castle Bravo 1954 von einer Wolke von Fall-Out getroffen worden. Weil sowohl die Bombe als auch der Wind sich anders verhielten als vorausberechnet, hatte die US-Armee die 64 Bewohner nicht evakuiert. Als radioaktive Asche auf die Insel regnete, rieben Kinder sie sich im Spiel in die Haare, sie drang in alle Hütten ein und verseuchte die Zisternen. Viele Bewohner erkrankten an akuter Strahlenkrankheit, etliche starben daran, obwohl die Amerikaner bald alle Insulaner fortbrachten.

Schon 1957 aber transportierte man die Überlebenden zurück und beharrte trotz zahlreicher Krebsfälle bis 1982 darauf, die Insel sei sicher. Auch danach wurden die Bewohner aber nicht ungesiedelt, bis Greenpeace mit seinem Schiff Rainbow Warrior die Bevölkerung 1985 auf ein Nachbaratoll brachte. Danach begann ein umstrittenes Reinigungsprogramm für die Insel. 1994 empfahl der amerikanische Forschungsrat, die Bewohner sollten bei einer Rückkehr ihre Lebensmittel zum Beispiel nur im Süden des Atolls sammeln, doch bislang haben sich die Marshallesen noch nicht darauf eingelassen. Als jetzt die Forscher aus New York auf Rongelap landeten, lagen die Strahlungswerte zwischen 0,06 und 0,55 msv/a; als Mittelwert berechneten sie 0,2 msv/a. Auf vielen Teilen der Insel gab es also zu viel Strahlung für eine Wiederbesiedlung, sollten sich die Zurückgekehrten von Fisch und lokalen Früchten ernähren.

10561566153_5c67d58c37_oZehn Jahre nach den letzten Tests, also in den frühen 1970er-Jahren, durften
einige Einwohner von Bikini auf ihre Inseln zurückkehren. Doch die Strahlungswerte waren damals – wie heute – zu hoch, so dass die Menschen schließlich doch wieder evakuiert werden mussten. Quelle: Energy.gov, flickr

Noch schlimmer waren die Werte auf Bikini: Hier lag schon der Mittelwert bei 1,8, die Spitzen übertrafen 6,5 msv/a. Und auf beiden Inseln, so stellten die Wissenschaftler fest, hatte man die möglichen Belastungen deutlich unterschätzt. Die gängigen Angaben waren nämlich aus Messungen berechnet, die zum Teil 20 Jahre alt waren. Und sie beruhten auf Annahmen, wie viel Zeit die Bewohner wohl in ihren Häusern verbringen und wie oft sie im Freien sein würden. Die Forscher um Autumn Bordner lassen sich zu keinem Kommentar hinreißen, was sie von dieser Methode halten, sie stellen nur trocken fest: „Unsere Resultate stellen einen Widerspruch zu den Hochrechnungen auf Basis früherer Messungen dar.“ Auch die Historie, die sich vermeintlich nach einfachen Gesetzen der Physik weiterentwickelt, braucht eben ab und zu ein Update.

Die Wissenschaftler waren zudem auf der Insel Runit, die zum Enewetak-Atoll gehört. Hier haben die Amerikaner strahlende Abfälle ihrer Bomben in den Krater einer Explosion geschoben und unter einer dünnen Betonkuppel vergraben. Das Zeug basiert vor allem auf Plutonium-239, also eine Alpha-Strahler, und dafür war das Bordner-Team nicht gerüstet: Ihre Messgerät erfassten Gamma-Strahlung. Auch davon gab es auf Runit aber einiges: direkt neben dem Bunker zeigte das Instrument gut 0,4 msv/a. Die Werte seien aber keinesfalls repräsentativ, warnen die Forscher: Sie haben die Insel nicht komplett erfasst, wohl auch zur eigenen Sicherheit.

Runit nämlich ist „Amerikas vergessene Atom-Müllhalde“ sagt Michael Gerrard, Professor für Umwelt-Recht an der Columbia University. Es gebe nicht einmal Warnschilder, geschweige denn Wachen, berichtete der Wissenschaftler von einem Besuch 2010. Viele Abfälle haben die abrückenden Truppen einfach in die Lagune geschoben, andere, darunter die Trümmer eines atomaren Blindgängers (nur der konventionelle Sprengstoff zündete), in Plastiksäcken in den Krater geworfen, der bis unter den Meeresspiegel reicht und dessen Fels aus durchlässigen Korallen besteht. Eine richtige Säuberung der Insel hat die Supermacht verweigert, und sein Parlament dann sogar gegen die finanzielle Entschädigung für die Einheimischen gestimmt, die vorher vereinbart worden war, stellt Gerrard bitter fest. Eines Tages aber werde sich das Problem nicht mehr auf eine abgelegene Insel abschieben lassen: wenn die in den Fluten des Pazifik versinken, weil der Klimawandel den Meeresspiegel anhebt.

Runit_Dome_001
Der „Cactus Dome“, so benannt nach dem Atomtest, der auf Runit einen
mehr als hundert Meter großen Krater hinterlassen hat, verdeckt große
Mengen radioaktiven Mülls. Quelle: US Defense Special Weapons Agency/
Wikipedia, public domain

Das hat Runit mit Camp Century gemeinsam. Äußerlich verbindet die beiden Orte wenig: hier eine im Prinzip idyllische Südsee-Insel, dort ein im Prinzip unberührtes Stück im Norden des grönländischen Eispanzers. Und in Pazifik kommt das Wasser zum Atommülllager, während in der Arktis die Reste langsam ins Meer rutschen könnten.

In Grönland hatte die US-Armee 1959 eine geheime Basis acht Meter unter dem Eis errichtet (ein Film im Wochenschau-Stil aus der Zeit wurde offenbar erst Jahrzehnte später freigegeben). Bis zu 200 Soldaten wurden dort stationiert; sie erkundeten, ob sich Tunnel im Inlandeis als Standort für Mittelstrecken mit Atomsprengköpfen eigneten. Dazu kam es offenbar nie, weil sich das Eis innerhalb einiger Jahre schon damals als weniger stabil als erwartet erwies. Und als die Armee das „Project Iceworm“ und die Basis 1967 aufgab, ließ sie 200 000 Liter Diesel, 24 Millionen Liter Abwasser und beachtliche Mengen chemischer Abfallstoffe zurück. Sie nahm den damals im Camp installierten Nuklearreaktor mit, der Strom und Wärme geliefert hatte. Das verstrahlte Kühlwasser jedoch blieb in einer Eisgrube.

CampCentury1Am Anfang waren die Arbeiter noch optimistisch, dass die ins Eis gefrästen Tunnel von Camp Century halten würden …

CampCentury2… doch bald drückte das Eis die „Wonderarch“ genannten Metallträger einfach ein. Hier in einem Raum, der zum Kernreaktor der Basis gehörte.
Quelle: US-Army, Technical Report 174 von 1965

Noch versinken diese giftigen Hinterlassenschaften des Kalten Krieges immer weiter im Eis von Grönland, aber das Ende ist absehbar. „Es ist nicht mehr die Frage, ob Camp Century und die Schadstoffe darin eines Tages an die Oberfläche gelangen, sondern wann“, sagt Dirk van As vom Dänischen Geologischen Dienst in Kopenhagen. Der Klimawandel könnte die Verhältnisse im Norden Grönlands bis zum Ende dieses Jahrhunderts umkehren, und dann würden Abfälle der ehemaligen Basis vielleicht schon ab 2120 an die Oberfläche gelangen.

Van As und Kollegen aus Kanada, den USA und der Schweiz haben ein fast vergessenes Kapitel der amerikanischen Atombomben-Historie aufgeschlagen (Geophysical Research Letters, online). Was sie enthüllen, klingt ein wenig wie eine andere Auflösung für den Roman „Fräulein Smillas Gespür für Schnee“. Die Forscher haben inzwischen freigegebene Dokumente über die Basis ausgewertet. „Man war überzeugt, das Eis würde sich nicht bewegen und die Abfallstoffe blieben für die Ewigkeit eingeschlossen“, sagt van As. „Doch heute wissen wir, dass es ziemlich dynamisch ist.“

Weil Details in den Dokumenten fehlen, kann das Team nur spekulieren, dass die Basis „nicht triviale“ Mengen PCB (Polychlorierte Biphenyle) enthält. Die krebserregenden Chemikalien wurden als Frostschutz eingesetzt; Farbe aus jener Zeit, die in anderen Basen benutzt wurde, enthielt bis zu fünf Prozent PCB. Ihre Behälter und die Dieseltanks von Camp Century dürften längst zerdrückt worden sein. Der Inhalt, immer noch flüssig, ist nun vermutlich in Blasen eingeschlossen genau wie die damals deponierten flüssigen Abfälle.

Camp Century3Eine Skizze des Kernreaktors mit seinen Nebenanlagen, die die US-Army in den Eistunneln installiert hatte. Quelle: US-Army, Technical Report 174 von 1965

Die dafür angelegten Kavernen, ursprünglich 40 Meter tief, liegen inzwischen vermutlich 65 Meter unter der Oberfläche, weil diese durch Schneefall immer weiter aufsteigt. Den Simulationsrechnungen der Forscher zufolge geht das noch Jahrzehnte so weiter: einem Modell zufolge über 2100 hinaus, ein anderes sagt für 2090 eine Umkehr vorher. Schon einige Jahrzehnten danach könnten erste Risse und Spalten im Eis die ehemalige Basis erreichen und Abfallstoffe mobilisieren, falls der Klimawandel so weiter geht wie bisher. Sollte die Welt nach dem Vertrag von Paris die globale Erwärmung begrenzen, dürfte das die Freisetzung in Grönland verzögern, aber nicht verhindern.

Dass viele Details in ihrem Aufsatz fehlen, ist den Wissenschaftlern bewusst. „Wir wollten eigentlich den Ort besuchen und Messungen machen, aber wir haben keine Finanzierung bekommen“, sagt Dirk van As. Mehrmals wurde ihnen von Geldgebern bedeutet, das Thema sei politisch schwierig. Unter anderem bei der Nato hatten die Forscher nach eigener Aussage Geld beantragt. Die wissenschaftlichen Gutachten über das Projekt seien positiv gewesen, aber dann müsse mindestens ein Land sein Veto eingelegt haben. Van As’ Kollege William Colgan von der University of Toronto hat in Science das gleiche erzählt; Anfragen der US-Journalisten an die dänische und grönländische Regierung und das US-Militär um Stellungnahmen blieben danach unbeantwortet. „Vielleicht wird es nach der Studie und dem Echo in den Medien einfacher“, sagt Dirk van As. „Wir sollten Radarmessungen auf dem Eis machen, um festzustellen, wo was liegt.“


Beitrag veröffentlicht

in

,

von